DOI QR코드

DOI QR Code

Bioanalytical Application of SERS Immunoassay for Detection of Prostate-Specific Antigen

  • Yoon, Kyung-Jin (Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University) ;
  • Seo, Hyeong-Kuyn (Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University) ;
  • Hwang, Hoon (Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University) ;
  • Pyo, Dong-Jin (Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University) ;
  • Eom, In-Yong (Department of Life Chemistry, Catholic University of Daegu) ;
  • Hahn, Jong-Hoon (Department of Chemistry, BK School of Molecular Science, POSTECH) ;
  • Jung, Young-Mee (Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University)
  • Received : 2010.02.18
  • Accepted : 2010.03.02
  • Published : 2010.05.20

Abstract

We demonstrate the possible application of the sandwich type surface-enhanced Raman scattering (SERS) immunoassay using antigen-antibody binding for detection of prostate-specific antigen (PSA) in cancer cells. In this sandwich type of SERS immunoassay, to capture antigens onto the immobilized layer of antibodies on the gold substrate we prepared the monolayer of gold nanoparticles on the APTMS-derivatized surface of a glass slide by using the SAM technique. This sandwich type of SERS immunoassay in which antigens on the substrate specifically capture antibodies on a Raman reporter (DSNB coated gold nanoparticles with R6G) could successfully detect PSA at low levels. A strong SERS spectrum of Raman reporter was observed only with a substrate in which PSA is present.

Keywords

References

  1. Kneipp, K., Moskovits, M., Kneipp, H., Eds.; Surface-Enhanced Raman Scattering-Physics and Applications; Springer: Heidelberg and Berlin, 2006.
  2. Aroca, R. Surface-Enhanced Vibrational Spectroscopy; John Wiley and Sons: Chichester, UK, 2006.
  3. Schatz G. C.; Van Duyne, P. R. Handbook of Vibrational Spectroscopy Vol. 1: Electromagnetic Mechanism of Surface-Enhanced Spectroscopy; Chalmers, J. M., Griffiths, P. R., Eds.; John Wiley and Sons: Chichester, UK, 2002.
  4. Chang R. K., Furtak, T. E., Eds.; Surface-Enhanced Raman Scattering; Plenum Press: New York, 1982.
  5. Qian, X.-M.; Nie, S. M. Chem. Soc. Rev. 2008, 37, 912. https://doi.org/10.1039/b708839f
  6. Graham, D.; Goodacre, R. Chem. Soc. Rev. 2008, 37, 883. https://doi.org/10.1039/b804297g
  7. Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Chem. Rev. 1999, 99, 2957. https://doi.org/10.1021/cr980133r
  8. Kneipp, K.; Kneipp, H.; Kartha, V. B.; Manoharan, R.; Deinum, G.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Phys. Rev. E 1998, 57, R6281. https://doi.org/10.1103/PhysRevE.57.R6281
  9. Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Phys. Rev. Lett. 1997, 78, 1667. https://doi.org/10.1103/PhysRevLett.78.1667
  10. Moskovits, M. Rev. Mod. Phys. 1985, 57, 783. https://doi.org/10.1103/RevModPhys.57.783
  11. Kim, K.; Lee, Y. M.; Lee, H. B.; Shin, K. S. Appl. Mater. Interfaces 2009, 1, 2174. https://doi.org/10.1021/am9003396
  12. Woo, M.-A.; Lee, S.-M.; Kim, G.; Baek, J.; Noh, M. S.; Kim, J. E.; Park, S. j.; Minai-Tehrani, A.; Park, S.-C.; Seo, Y. T.; Kim, Y.-K.; Lee, Y.-S.; Jeong, D. H.; Cho, M.-H. Anal. Chem. 2009, 81, 1008. https://doi.org/10.1021/ac802037x
  13. Chon, H.; Lee, S.; Son, S. W.; Oh, C. H.; Choo, J. Anal. Chem. 2009, 81, 3029. https://doi.org/10.1021/ac802722c
  14. Bao, F.; Yao, J.-L.; Gu, R.-A. Langmuir 2009, 25, 10782. https://doi.org/10.1021/la901337r
  15. Wang, G.; Park, H.-Y.; Lipert, R. J. Anal. Chem. 2009, 81, 9643. https://doi.org/10.1021/ac901711f
  16. Stevenson, R.; Ingram, A.; Leung, H.; McMillan, D. C.; Graham, D. Analyst 2009, 134, 842. https://doi.org/10.1039/b902174d
  17. Jehn, C.; Küstner, B.; Adam, P.; Marx, A.; Ströbel, P.; Schmuck, C.; Schlücker, S. Phys. Chem. Chem. Phys. 2009, 11, 7499. https://doi.org/10.1039/b905092b
  18. Han, X. X.; Cai, L. j.; Guo, J.; Wang, C. X.; Ruan, W. D.; Han, W. Y.; Xu, W. Q.; Zhao, B.; Ozaki, Y. Anal. Chem. 2008, 80, 3020. https://doi.org/10.1021/ac702497t
  19. Sun, L.; Yu, C.; Irudayaraj, J. Anal. Chem. 2008, 80, 3342. https://doi.org/10.1021/ac702542n
  20. Guo, S.; Wang, Y.; Wang, E. Nanotechnology 2007, 18, 405602. https://doi.org/10.1088/0957-4484/18/40/405602
  21. Lee, S.; Kim, S.; Choo, J.; Shin, S. Y.; Lee, Y. H.; Choi, H. Y.; Ha, S.; Kang, K.; Oh, C. H. Anal. Chem. 2007, 79, 916. https://doi.org/10.1021/ac061246a
  22. Driskell, J. D.; Uhlenkamp, J. M.; Lipert, R. J.; Porter, M. D. Anal. Chem. 2007, 79, 4141. https://doi.org/10.1021/ac0701031
  23. Kim, J.-H.; Kim, J.-S.; Choi, H.; Lee, S.-M.; Jun, B.-H.; Yu, K.-N.; Kuk, E.; Kim, Y.-K.; Jeong, D. H.; Cho, M.-H.; Lee, Y.-S. Anal. Chem. 2006, 78, 6967. https://doi.org/10.1021/ac0607663
  24. Driskell, J. D.; Kwarta, K. M.; Lipert, R. J.; Porter, M. D.; Neill, J. D.; Ridpath, J. F. Anal. Chem. 2005, 77, 6147. https://doi.org/10.1021/ac0504159
  25. Lyandres, O.; Shah, N. C.; Yonzon, C. R.; Walsh, J. T., Jr.; Glucksberg, M. R.; Van Duyne, R. P. Anal. Chem. 2005, 77, 6134. https://doi.org/10.1021/ac051357u
  26. Grubisha, D. S.; Lipert, R. J.; Park, H.-Y.; Driskell, J.; Porter, M. D. Anal. Chem. 2003, 75, 5936. https://doi.org/10.1021/ac034356f
  27. Graham, D.; Mallinder, B. J.; Whitcombe, D.; Watson, N. D.; Smith, W. E. Anal. Chem. 2002, 74, 1069. https://doi.org/10.1021/ac0155456
  28. Cao, Y. C.; Jin, R.; Mirkin, C. A. Science 2002, 297, 1536. https://doi.org/10.1126/science.297.5586.1536
  29. Nie, S.; Emory, S. R. Science 1997, 275, 1102. https://doi.org/10.1126/science.275.5303.1102
  30. Ni, J.; Lipert, R. J.; Dawson, G. B.; Porter, M. D. Anal. Chem. 1999, 71, 4903. https://doi.org/10.1021/ac990616a
  31. Terry, L. A.; White, S. F.; Tigwell, L. J. J. Agric. Food Chem. 2005, 53, 1309. https://doi.org/10.1021/jf040319t
  32. Kanda, V.; Kariuki, J. K.; Harrison D. J.; Mcdermott, M. T. Anal. Chem. 2004, 76, 7252.
  33. Jaiswal, J. K.; Mattoussi, H.; Mauro J. M.; Simon, S. M. Nat. Biotechnol. 2003, 21, 47. https://doi.org/10.1038/nbt767
  34. Rowe, C. A.; Scruggs, S. B.; Feldstein, M. J.; Golden J. P.; Ligler, F. S. Anal. Chem. 1999, 71, 431.
  35. Bruchez, M., Jr.; Moronne, M.; Gin, P.; Weiss, P.; Alivisatos, A. P. Science 1998, 281, 2013. https://doi.org/10.1126/science.281.5385.2013
  36. Chan W. C.; Nie, S. Science 1998, 281, 2016. https://doi.org/10.1126/science.281.5385.2016
  37. Zheng, Y.; Chen, H.; Liu, X.-P.; Jiang, J.-H.; Luo, Y.; Shen, G.-L.; Yu, R.-Q. Talanta 2008, 77, 809. https://doi.org/10.1016/j.talanta.2008.07.038
  38. Kerman, K.; Endo, T.; Tsukamoto, M.; Chikae, M.; Takamura, Y.; Tamiya, E. Talanta 2007, 71, 1494. https://doi.org/10.1016/j.talanta.2006.07.027
  39. Cao, C.; Kim, J.; Kim, B.; Chae, H.; Yoon, H.; Yang, S.; Sim, S. Biosens. Bioelectron. 2006, 21, 2106. https://doi.org/10.1016/j.bios.2005.10.014
  40. Fang, Y.; Bjorn, P.; Stefan, L.; Wolfgang, K. Anal. Chem. 2004, 76, 6765. https://doi.org/10.1021/ac048937w
  41. Fernandez-Sanchez, C.; McNeil, C. J.; Rawson, K.; Nilsson, O. Anal. Chem. 2004, 76, 5649. https://doi.org/10.1021/ac0494937
  42. Acevedo, B.; Perera, Y.; Ruiz, M.; Rojas, G.; Benitez, J.; Ayala, M.; Gavilondo, J. Clin. Chim. Acta 2002, 317, 55. https://doi.org/10.1016/S0009-8981(01)00749-5
  43. Seto, Y.; Iba, T.; Abe, K. Luminescence 2001, 16, 285. https://doi.org/10.1002/bio.654
  44. Soukka, T.; Paukkunen, J.; Harma, H.; Lonnberg, S.; Lindroos, H.; Lövgren, T. Clin. Chim. 2001, 47, 1269.
  45. Frens, G. Nat. Phys. Sci. 1973, 241, 20. https://doi.org/10.1038/physci241020a0

Cited by

  1. SERS Immunoassay Using Microcontact Printing for Application of Sensitive Biosensors vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4281
  2. Applications of Self-Assembled Monolayers in Surface-Enhanced Raman Scattering vol.2012, pp.1687-9511, 2012, https://doi.org/10.1155/2012/319038
  3. The golden age: gold nanoparticles for biomedicine vol.41, pp.7, 2012, https://doi.org/10.1039/C1CS15237H
  4. SERS Tags: Novel Optical Nanoprobes for Bioanalysis vol.113, pp.3, 2013, https://doi.org/10.1021/cr300120g
  5. nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection vol.2, pp.6, 2014, https://doi.org/10.1039/C3TB21278E
  6. Hybrid nanostructures for SERS: materials development and chemical detection vol.17, pp.33, 2015, https://doi.org/10.1039/C5CP01032B
  7. Biomarker detection technologies and future directions vol.141, pp.3, 2016, https://doi.org/10.1039/C5AN01790D
  8. Surface-Enhanced Raman Scattering-Based Immunoassay Technologies for Detection of Disease Biomarkers vol.7, pp.1, 2017, https://doi.org/10.3390/bios7010007
  9. Disease-related proteins determination based on surface-enhanced Raman spectroscopy pp.1520-569X, 2019, https://doi.org/10.1080/05704928.2018.1557676
  10. Ultrasensitive detection of malondialdehyde with surface-enhanced Raman spectroscopy vol.398, pp.7, 2010, https://doi.org/10.1007/s00216-010-4225-3
  11. Molecular Sensing Efficiency of Gold-Silver Alloy Nanowires vol.32, pp.4, 2010, https://doi.org/10.5012/bkcs.2011.32.4.1346
  12. Immunoassay for LMP1 in nasopharyngeal tissue based on surface-enhanced Raman scattering vol.7, pp.None, 2010, https://doi.org/10.2147/ijn.s26854
  13. Plasmonic Metal-Insulator-Metal Capped Polymer Nanopillars for SERS Analysis of Protein-Protein Interactions vol.122, pp.11, 2010, https://doi.org/10.1021/acs.jpcc.7b08656
  14. A preliminary study of surface enhanced Raman scattering immunoassay based on graphene oxide substrate vol.170, pp.None, 2018, https://doi.org/10.1016/j.ijleo.2018.05.093
  15. Development of a Protein Microarray Chip with Enhanced Fluorescence for Identification of Semen and Vaginal Fluid vol.18, pp.11, 2010, https://doi.org/10.3390/s18113874
  16. Biomedical Nano Tools: A Potential New Paradigm for Immunoassays and Immune Detection vol.9, pp.2, 2010, https://doi.org/10.2174/2468187309666190207145845
  17. A Review on Surface-Enhanced Raman Scattering vol.9, pp.2, 2010, https://doi.org/10.3390/bios9020057
  18. A Mini-Review of Nanotechnology and Prostate Cancer: Approaches in Early Diagnosis vol.4, pp.1, 2010, https://doi.org/10.29252/jcbr.4.1.21
  19. Biomarkers Determination Based on Surface-Enhanced Raman Scattering vol.8, pp.4, 2020, https://doi.org/10.3390/chemosensors8040118
  20. Dual-enhancement and dual-tag design for SERS-based sandwich immunoassays: evaluation of a metal-metal effect in 3D architecture vol.189, pp.1, 2010, https://doi.org/10.1007/s00604-021-05125-0