• Title/Summary/Keyword: subsonic flow

Search Result 220, Processing Time 0.021 seconds

Effects of LEX on the Vortex Field over a Delta Wing (LEX가 델타형 날개의 와류 유동장에 미치는 영향)

  • 백승욱;손명환
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.83-90
    • /
    • 2002
  • An experimental study was conducted to investigate the effects of a leading edge extension(LEX) on the vortex flow field over a delta wing by measuring the total pressure distribution in a subsonic wind tunnel. Freestream velocity was 40m/sec and Reynolds number per meter was $1.76{\times}10^6$. The wing with the LEX experienced a strong interaction between the LEX and wing vortices. As the angle of attack increased, the coupled vortex field of these two vortices maintained its strength and concentricity much better than the vortex field over the wing without the LEX.

플라잉디스크의 단면 형상에 따른 공력 특성 연구

  • Kim, Tae-Uk;Park, Da-Un
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.628-631
    • /
    • 2016
  • 본 연구에서는 플라잉디스크의 윗면 곡률과 끝단두께에 따른 공력특성의 변화 및 유동 흐름을 EDISON_CFD를 통해 해석하고자 한다. 플라잉디스크는 받음각이 증가할수록 윗면 표면에서는 박리 거품이 발생하게 되고 아랫면에서 윗면으로 올라 갈려는 유동의 흐름이 발생하게 되어 뒷전과 후류에서 거대한 박리 거품이 발생하게 되어 공력특성 및 유동흐름에 큰 변화를 주게 된다. 총 5가지의 형상에 대해서 받음각을 $0^{\circ}{\sim}25^{\circ}$까지 마하수 0.0588, 해석모델은 KFLOW에서 k-w SST를 레이놀즈수 $3.78{\times}10^5$을 조건으로 각 형상의 공력특성과 유동의 흐름의 비교를 분석하였다. 그 결과 윗면의 곡률이 증가 할수록 앞전박리가 활발해지고, 끝단두께가 두꺼워 질수록 뒷전박리가 활발해진다. 이로 인해 곡률은 완만할수록 두께는 얇을수록 양력계수와 실속각을 증가 시킬 수 있다.

  • PDF

Combustion/Shock Interactions in a Dual-Mode Scramjet Engine (이중모드 스크램제트 엔진에서 연소와 충격파의 상호작용)

  • Choi, Jeong-Yeol;Noh, Jin-Hyeon;Byun, Jong-Ryul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.367-370
    • /
    • 2011
  • A high-resolution numerical study is carried out to investigate the transient process of the combustion and the shock-train developments in an ethylene-fueled direct-connect dual-mode scramjet combustor. Air-throttling is then applied at the expansion part of the combustor to provide mass addition to block the flow to subsonic speed, hence to enhance the fuel-air mixing and ignition. Present simulation shows the detailed results for the better understanding of transient processes of the operation regimes in the dual-mode scramjet combustor.

  • PDF

Effect of Free End Shape on Wake Structure Around a Finite Cylinder Located in an Atmospheric Boundary Layer (대기경계층 내에 놓인 실린더의 자유단 형상변화가 후류유동에 미치는 영향에 관한 연구)

  • Park, Cheol-Woo;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.105-116
    • /
    • 2003
  • The flow structure around the free end of a finite circular cylinder (FC) embedded in an atmospheric boundary layer (ABL) over open terrain was investigated experimentally with varying the free end shape. The experiments were carried out in a closed-return type subsonic wind tunnel. A finite cylinder with an aspect ratio (L/D) of 6 was mounted vertically on a long flat plate. The Reynolds number based on the cylinder diameter is about Re=7,500. The velocity fields near the FC free end were measured using the single-frame double-exposure PIV method. As a result, for the FC with a right-angled free end, there is a peculiar vortical structure, showing counter-rotating twin vortices near the FC free end. It is caused by the interaction between the entrained irrotational fluids from both sides of FC and the downwash flow from the FC free-end.

Comparison Study of Viscous Flutter Boundary for the AGARD 445.6 Wing Using Different Turbulent Boundary Layer Models (난류 경계층 모델을 고려한 AGARD 445.6 날개의 플러터 해석 및 실험결과 비교)

  • Kim, Yo-Han;Kim, Dong-Hyun;Kim, Dong-Man;Kim, Soo-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.704-710
    • /
    • 2009
  • In this study, a comparison study of flutter analysis for the AGARD 445.6 wing with wind turnnel test data has been conducted in the subsonic, transonic and supersonic flow regions. Nonlinear aeroelastic using FSIPRO3D which is a generalized user-friendly fluid-structure analyses have been conducted for a 3D wing configuration considering shockwave and turbulent viscosity effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structure dynamics(CSD), finite element method(FEM) and computations fluid dynamics(CFD) in the time domain. MSC/NASTRAN is used for the vibration analysis of a wing model, and then the result is applied to the FSIPRO3D module. the results for dynamic aeroelastic response using different turbulent models are presented for several Mach numbers. Calculated flutter boundary are compared with the wind-tunnel experimental and the results show very good agreements.

Experimental Study of Time-Dependent Evolution of Water Droplet Breakup in High-Speed Air Flows

  • Park, Gisu;Yeom, Geum-Su;Hong, Yun Ky;Moon, Kwan Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.38-47
    • /
    • 2017
  • This paper presents experimental data on water droplet breakup in high-speed air flows. Exact-time-dependent evolution of wave and droplet interaction as well as breakup processes were optically visualized using a shadowgraph technique. Droplet experiments were conducted in a shock tube. Five flow conditions were used with an incident shock wave Mach number from 1.40 to 2.19 with Weber number based on the droplet initial diameter from 2300 to 38000, respectively. This corresponds to post-shock flow speeds varying from subsonic to supersonic. The considered droplet diameters were 2.0 mm to 3.6 mm. Some interesting wave patterns in the near wake were found. The present data shows that with an increase in the Weber number the droplet acceleration coefficient decreases and the level of decrease was weaker for the case of higher Mach numbers. This state of affair is different to the existing data in literature. Possible reasons are discussed.

A Study on the Design of Free-Fall Simulator using concept of Vertical Wind Tunnel (수직형 풍동을 응용한 고공강하 시뮬레이터의 설계에 대한 연구)

  • Choi, Sang-Gil;Cho, Jin-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.447-452
    • /
    • 2000
  • In this study, the design of Free-Fall Simulator was carried out using concept of vertical wind tunnel. Free-Fall Simulator is not an experimental equipment but a training equipment. Therefore Free-Fall Simulator needs a large training section compared with test section of wind tunnel and has critical limit of height. These limits bring about the difficulty of design for a return passage. Due to small area ratio, the downstream flow of training section with high speed is not decelerated adequately to the fan section. High-speed flow leads to great losses in the small area ratio diffuser and corner. So design of diffusers and corners located between training section and fan section has a great effect on the Free-Fall Simulator performance. This study used an estimation method of subsonic wind tunnel performance. It considered each section of Free-Fall Simulator as an independent section. Therefore loss of one section didn't affect loss of other sections. Because losses of corner with vane and $1^{st}$ diffuser are most parts of overall Free-Fall Simulator, this study focused on the design of these sections.

  • PDF

Verification of drag-reduction capabilities of stiff compliant coatings in air flow at moderate speeds

  • Boiko, Andrey V.;Kulik, Victor M.;Chun, Ho-Hwan;Lee, In-Won
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.242-253
    • /
    • 2011
  • Skin frictional drag reduction efficiency of "stiff" compliant coating was investigated in a wind tunnel experiment. Flat plate compliant coating inserts were installed in a wind tunnel and the measurements of skin frictional drag and velocity field were carried out. The compliant coatings with varying viscoelastic properties had been prepared using different composition. In order to optimize the coating thickness, the most important design parameter, the dynamic viscoelastic properties had been determined experimentally. The aging of the materials (variation of their properties) during half a year was documented as well. A design procedure proposed by Kulik et al. (2008) was applied to get an optimal value for the coating thickness. Along with the drag measurement using the strain balance, velocity and pressure were measured for different coatings. The compliant coatings with the thickness h = 7mm achieved 4~5% drag reduction within a velocity range 30~40 m/s. The drag reduction mechanism of the attenuation of turbulence velocity fluctuations due to the compliant coating was demonstrated. It is envisioned that larger drag reduction effect is obtainable at higher flow velocities for high speed trains and subsonic aircrafts.

Development of the Pilot-Tube to Measure Flight Altitude and Velocity (비행체 고도 및 속도계측용 Pilot-Tube 연구)

  • 최진철;이기권;박찬우
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.3
    • /
    • pp.19-24
    • /
    • 2001
  • The Pilot-Tube is the device that measures velocity and altitude of high speed vehicle. Accurate measurements of speed and altitude are essential to the safe and efficient operation of aircraft. For the purpose of determining optimal design parameters of Pilot-Tube such as nose inlet configuration, nose shape, static hole configuration, and static hole location, subsonic flow field was calculated numerically and analyzed. A Pilot-Tube was manufactured based on numerical flow field analysis, and pressure and air velocity was measured experimentally in the wind tunnel. As a result manufacturing and design technologies of the Pilot-Tube were acquired to make flight-device.

  • PDF

Analysis of the Aerodynamic Characteristics of Missile Configurations Using a Semi-Empirical Method (Semi-Empirical 기법을 이용한 미사일 형상의 공력특성 해석)

  • Han, Myung-Shin;Myong, Rho-Shin;Cho, Tae-Hwan;Hwang, Jong-Son;Park, Chan-Hyeok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.26-31
    • /
    • 2005
  • An efficient estimation of the aerodynamic characteristics for missile configurations is essential in the preliminary stage of a missile design. In this study, a Missile DATCOM family code based on the semi-empirical method was utilized for this purpose. In order to check the accuracy and reliability of the code several test cases have been considered: subsonic flow with high angles of attack and supersonic flow with moderate angles of attack. It turned out that the code in general provides prediction in qualitative agreement with the experimental data and results by other works. Finally, the code was applied to a more complicated missile configuration with canard and freely spinning tail fin.