• Title/Summary/Keyword: subset difference

Search Result 68, Processing Time 0.024 seconds

Development of Adaptive Spatial Filter to Improve Noise Characteristics of PET Images (PET 영상의 잡음개선을 위한 적응적 공간 필터 개발)

  • Woo, S. K.;Choi, Y.;Im, K. C.;Song, T. Y.;Jung, J. H.;Lee, K. H.;Kim, S. E.;Choe, Y. S.;Park, C. C.;Kim, B. T.
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.253-261
    • /
    • 2002
  • A spatially adaptive falter was formulated to imrove PET image qualify and the Performance of the filter was evaluated using simulation and phantom and human PET studies. In the proposed filter. if a pixel was identified as the edge Pixel, the Pixel value was Preserved. Otherwise a Pixel was replaced by the mean of the pixel values weighted by 2:7: 2. A Pixel was identified as the edge Pixel. if it satisfies the following conditions : the number of ADs (absolute difference between center and neighborhood pixels) which is smaller than THl (($pix_max{\times}0.1/log_2(NPM)$, NPM : mean of 6 neighborhood pixels excluding minimum and maximum) is 8-k and the number of ADs which is lager than TH2 ($NPM{\times}0.1$) is k. where k : 2, 3, …, 6. The results of this study demonstrate the superior performance of the Proposed titter compared to Gaussian fitter, weight median filter and subset averaged median filter. The proposed tittering method is simple but effective in increasing uniformity and contrast with minimal degradation of spatial resolution of PET images and thus. is expected to Provide improved diagnositc quality PET images .

Analysis of Lymphocyte Subsets in Peripheral Blood after Radiotherapy (악성 종양 환자에서 방사선 치료 전, 후의 림프구 아형 분석)

  • Choi, Young-Min;Kim, Jeung-Kee;Lee, Hyun-Sik;Hur, Won-Joo;Kim, Jung-Man
    • Radiation Oncology Journal
    • /
    • v.14 no.3
    • /
    • pp.229-236
    • /
    • 1996
  • Purpose : To evaluate the changes of differential counts and lymphocyte subsets in cancer patients' leukocyte before and after radiotherapy. Materials and Methods : From Dec. 1994 to Mar 1995, the changes of leukocyte and its subsets in 16 patients who received radiotherapy in the Dept. of Radiation Oncology of Dong-A University Hospital were investigated. Radiation was delivered from 2700 cGy to 6660 cGy with median dose of 5400 cGy. The results of pre- and Post-radiotherapy were analyzed by paired T-test. The results of patients Who received < 50 Gy and $\geq$ 50 Gy were analyzed by Wilcoxon test. Results : Before and after radiotherapy, there was not any significant differences in the counts of leukocyte, granulocyte and monocyte. A remarkable decrease was noted in lymphocyte counts after radiotherapy(p=0.015). T cells, B cells and natural killer cells were also decreased in number after radiotherapy but it was not significant statistically. 1 helper cells and T suppressor cells were also decreased in number(p>0.05). The ratio of T helper/suppressor cell was decreased from 1.52 to 1, 11 and it was significant statistically(p=0.016). The portion of T suppressor cell among all T cells was increased after radiotherapy (p=0.0195). No significant difference was observed in the analysis of leukocyte and its subsets between patients who received < 50 Gy and $\geq$ 50 Gy, Conclusion : Radiotherapy caused remarkable decrease in lymphocyte count and its subsets. Among all lymphocyte subsets, T helper cell might be the most vulnerable to radiation, considering decreased ratio of T helper/suppressor cell count after radiotherapy.

  • PDF

Understanding Biotechnology: An Analysis of High School Students' Concepts (생명공학의 기본 개념에 대한 고등학생의 이해도 조사 및 개념 분석)

  • Chung, Young-Lan;Kye, Bo-Ah
    • Journal of The Korean Association For Science Education
    • /
    • v.18 no.4
    • /
    • pp.463-472
    • /
    • 1998
  • Biotechnology is the process of using biological system for the production of materials. Genetic engineering, a subset of biotechnology, is the process of altering biological systems by the purposeful manipulation of DNA It is a new field in biology and no topic in biology is more likely to impact our personal lives and is therefore more worthy of our attention and understanding. The purpose of this study was to investigate students' understanding of the concepts of biotechnology, and a test tool which is made up of 20 basic questions was developed for the study. The subject of this study was high school students and the sample size was 486. In order to find out the source of students' misunderstanding, we also analysed high school textbooks and teachers were given the same tool applied to students. Two-way ANOVA was used for the analysis. Major findings of this study are as following; 1. Mean score of students was 41, and there was a significant difference between the scores of boys and girls(p<0.05). Female students scored higher than male students. The variables "region" and "major" had no significant influence. 2. Students' the most misunderstood concepts were "monoclonal antibody" and "gene cloning". Many students thought that a plamid DNA originally has a useful DNA in it, which is apparently wrong. 3. Mean score of teachers was 82, and the variabes of gender and career did not have statistically significant influence on the result(p>0.05). 4. Teachers got the lowest scores on the concepts of "gene therapy", "the accomplishment of biotechnology in agriculture and medicine", and "plasmid DNA". The results of item analysis implied that teachers' misunderstanding might be a part of the sources of students' misunderstaning. 5. Out of 18 basic concepts selected in the study, only 10 concepts were explained well enough in most textbooks. The results of item analysis indicated that textbooks also could be a part of the source of students' misunderstanding.

  • PDF

List-event Data Resampling for Quantitative Improvement of PET Image (PET 영상의 정량적 개선을 위한 리스트-이벤트 데이터 재추출)

  • Woo, Sang-Keun;Ju, Jung Woo;Kim, Ji Min;Kang, Joo Hyun;Lim, Sang Moo;Kim, Kyeong Min
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.309-316
    • /
    • 2012
  • Multimodal-imaging technique has been rapidly developed for improvement of diagnosis and evaluation of therapeutic effects. In despite of integrated hardware, registration accuracy was decreased due to a discrepancy between multimodal image and insufficiency of count in accordance with different acquisition method of each modality. The purpose of this study was to improve the PET image by event data resampling through analysis of data format, noise and statistical properties of small animal PET list data. Inveon PET listmode data was acquired as static data for 10 min after 60 min of 37 MBq/0.1 ml $^{18}F$-FDG injection via tail vein. Listmode data format was consist of packet containing 48 bit in which divided 8 bit header and 40 bit payload space. Realigned sinogram was generated from resampled event data of original listmode by using adjustment of LOR location, simple event magnification and nonparametric bootstrap. Sinogram was reconstructed for imaging using OSEM 2D algorithm with 16 subset and 4 iterations. Prompt coincidence was 13,940,707 count measured from PET data header and 13,936,687 count measured from analysis of list-event data. In simple event magnification of PET data, maximum was improved from 1.336 to 1.743, but noise was also increased. Resampling efficiency of PET data was assessed from de-noised and improved image by shift operation of payload value of sequential packet. Bootstrap resampling technique provides the PET image which noise and statistical properties was improved. List-event data resampling method would be aid to improve registration accuracy and early diagnosis efficiency.

The Evaluation of Reconstruction Method Using Attenuation Correction Position Shifting in 3D PET/CT (PET/CT 3D 영상에서 감쇠보정 위치 변화 방법을 이용한 영상 재구성법의 평가)

  • Hong, Gun-Chul;Park, Sun-Myung;Jung, Eun-Kyung;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.172-176
    • /
    • 2010
  • Purpose: The patients' moves occurred at PET/CT scan will cause the decline of correctness in results by resulting in inconsistency of Attenuation Correction (AC) and effecting on quantitative evaluation. This study has evaluated the utility of reconstruction method using AC position changing method when having inconsistency of AC depending on the position change of emission scan after transmission scan in obtaining PET/CT 3D image. Materials and Methods: We created 1 mL syringe injection space up to ${\pm}2$, 6, 10 cm toward x and y axis based on central point of polystyrene ($20{\times}20110$ cm) into GE Discovery STE16 equipment. After projection of syringe with $^{18}F$-FDG 5 kBq/mL, made an emission by changing the position and obtained the image by using AC depending on the position change. Reconstruction method is an iteration reconstruction method and is applied two times of iteration and 20 of subset, and for every emission data, decay correction depending on time pass is applied. Also, after setting ROI to the position of syringe, compared %Difference (%D) at each position to radioactivity concentrations (kBq/mL) and central point. Results: Radioactivity concentrations of central point of emission scan is 2.30 kBq/mL and is indicated as 1.95, 1.82 and 1.75 kBq/mL, relatively for +x axis, as 2.07, 1.75 and 1.65 kBq/mL for -x axis, as 2.07, 1.87 and 1.90 kBq/mL for +y axis and as 2.17, 1.85 and 1.67 kBq/mL for -y axis. Also, %D is yield as 15, 20, 23% for +x axis, as 9, 23, 28% for -x axis, as 12, 21, 20% for +y axis and as 8, 22, 29% for -y axis. When using AC position changing method, it is indicated as 2.00, 1.95 and 1.80 kBq/mL, relatively for +x axis, as 2.25, 2.15 and 1.90 kBq/mL for -x axis, as 2.07, 1.90 and 1.90 kBq/mL for +y axis, and as 2.10, 2.02, and 1.72 kBq/mL for -y axis. Also, %D is yield as 13, 15, 21% for +x axis, as 2, 6, 17% for -x axis, as 9, 17, 17% for +y axis, and as 8, 12, 25% for -y axis. Conclusion: When in inconsistency of AC, radioactivity concentrations for using AC position changing method increased average of 0.14, 0.03 kBq/mL at x, y axis and %D was improved 6.1, 4.2%. Also, it is indicated that the more far from the central point and the further position from the central point under the features that spatial resolution is lowered, the higher in lowering of radioactivity concentrations. However, since in actual clinic, attenuation degree increases more, it is considered that when in inconsistency, such tolerance will be increased. Therefore, at the lesion of the part where AC is not inconsistent, the tolerance of radioactivity concentrations will be reduced by applying AC position changing method.

  • PDF

Quantitative Assessment Technology of Small Animal Myocardial Infarction PET Image Using Gaussian Mixture Model (다중가우시안혼합모델을 이용한 소동물 심근경색 PET 영상의 정량적 평가 기술)

  • Woo, Sang-Keun;Lee, Yong-Jin;Lee, Won-Ho;Kim, Min-Hwan;Park, Ji-Ae;Kim, Jin-Su;Kim, Jong-Guk;Kang, Joo-Hyun;Ji, Young-Hoon;Choi, Chang-Woon;Lim, Sang-Moo;Kim, Kyeong-Min
    • Progress in Medical Physics
    • /
    • v.22 no.1
    • /
    • pp.42-51
    • /
    • 2011
  • Nuclear medicine images (SPECT, PET) were widely used tool for assessment of myocardial viability and perfusion. However it had difficult to define accurate myocardial infarct region. The purpose of this study was to investigate methodological approach for automatic measurement of rat myocardial infarct size using polar map with adaptive threshold. Rat myocardial infarction model was induced by ligation of the left circumflex artery. PET images were obtained after intravenous injection of 37 MBq $^{18}F$-FDG. After 60 min uptake, each animal was scanned for 20 min with ECG gating. PET data were reconstructed using ordered subset expectation maximization (OSEM) 2D. To automatically make the myocardial contour and generate polar map, we used QGS software (Cedars-Sinai Medical Center). The reference infarct size was defined by infarction area percentage of the total left myocardium using TTC staining. We used three threshold methods (predefined threshold, Otsu and Multi Gaussian mixture model; MGMM). Predefined threshold method was commonly used in other studies. We applied threshold value form 10% to 90% in step of 10%. Otsu algorithm calculated threshold with the maximum between class variance. MGMM method estimated the distribution of image intensity using multiple Gaussian mixture models (MGMM2, ${\cdots}$ MGMM5) and calculated adaptive threshold. The infarct size in polar map was calculated as the percentage of lower threshold area in polar map from the total polar map area. The measured infarct size using different threshold methods was evaluated by comparison with reference infarct size. The mean difference between with polar map defect size by predefined thresholds (20%, 30%, and 40%) and reference infarct size were $7.04{\pm}3.44%$, $3.87{\pm}2.09%$ and $2.15{\pm}2.07%$, respectively. Otsu verse reference infarct size was $3.56{\pm}4.16%$. MGMM methods verse reference infarct size was $2.29{\pm}1.94%$. The predefined threshold (30%) showed the smallest mean difference with reference infarct size. However, MGMM was more accurate than predefined threshold in under 10% reference infarct size case (MGMM: 0.006%, predefined threshold: 0.59%). In this study, we was to evaluate myocardial infarct size in polar map using multiple Gaussian mixture model. MGMM method was provide adaptive threshold in each subject and will be a useful for automatic measurement of infarct size.

Usefulness of LIFE in diagnosis of bronchogenic carcinoma (기관지 암의 진단에서 형광기관지 내시경검사의 유용성)

  • Lee, Sang Hwa;Shim, Jae Jeong;Lee, So Ra;Lee, Sang Youb;Suh, Jung Kyung;Cho, Jae Yun;Kim, Han Gyum;In, Kwang Ho;Choi, Young Ho;Kim, Hark Jei;Yoo, Se Hwa;Kang, Kyung Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.1
    • /
    • pp.69-84
    • /
    • 1997
  • Background : Although the overall prognosis of patients with lung cancer is poor, highly effective treatment exists for the small subset of patients with early lung cancer(carcinoma in situ/micro- invasive cancer). But very few patients have benefit from them because these lesions are difficult to detect and localize with conventional white-light bronchoscopy. To overcome this problem, a Lung Imaging Fluorescence Endoscopic device(LIFE) was developed to detect and clearly delineate the exact location and extent of premalignant and early lung cancer lesions using differences in tissue autofluorescence. Purpose : The purpose of this study was to determine the difference of sensitivity and specificity in detecting dysplasia and carcinoma between fluorescence imaging and conventional white light bronchoscopy. Material and Methods : 35 patients (16 with abnormal chest X-ray, 2 with positive sputum study, 2 with undiagnosed pleural effusion, 15 with respiratory symptom) have been examined by LIFE imaging system. After a white light bronchoscopy, the patients were submitted to fluorescence bronchoscopy and the findings of both examinations have been classified in 3 categories(class I, II, III). From of all class n and III sites, 79 biopsy specimens have been collected for histologic examination: a comparison between histologic results and white light or fluorescence bronchoscopy has been performed for assessing sensitivity and specificity of the two methods. Results : 1) Total 79 sires in 35 patients were examined. Histology demonstrated 8 normal mucosa, 21 hyperplasia, 23 dysplasia, and 27 microinvasive and invasive carcinoma. 2) The sensitivity of white light or fluorescence bronchoscopy in detecting dysplasia was 60.9% and 82.6%, respectively. 3) The results of this study showed 70.3 % sensitivity for microinvasive or invasive carcinoma with LIFE system, versus 100% sensitivity for white light in 27 cases of carcinoma. The false negative study of LIFE system was 8 cases(3 adenocarcinoma and 5 small cell carcinoma), which were infiltrated in submucosal area and had normal epithelium. Conclusion : To improve the ability 10 diagnose and stage more accurately, fluorescence imaging may become an important adjunct to conventional bronchoscopic examination because of its high detection rate of premalignant and malignant epithelial lesion. But. it has limitation to detect in submucosal infiltrating carcinoma.

  • PDF

The Evaluation of Attenuation Difference and SUV According to Arm Position in Whole Body PET/CT (전신 PET/CT 검사에서 팔의 위치에 따른 감약 정도와 SUV 변화 평가)

  • Kwak, In-Suk;Lee, Hyuk;Choi, Sung-Wook;Suk, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.21-25
    • /
    • 2010
  • Purpose: For better PET imaging with accuracy the transmission scanning is inevitably required for attenuation correction. The attenuation is affected by condition of acquisition and patient position, consequently quantitative accuracy may be decreased in emission scan imaging. In this paper, the present study aims at providing the measurement for attenuation varying with the positions of the patient's arm in whole body PET/CT, further performing the comparative analysis over its SUV changes. Materials and Methods: NEMA 1994 PET phantom was filled with $^{18}F$-FDG and the concentration ratio of insert cylinder and background water fit to 4:1. Phantom images were acquired through emission scanning for 4min after conducting transmission scanning by using CT. In an attempt to acquire image at the state that the arm of the patient was positioned at the lower of ahead, image was acquired in away that two pieces of Teflon inserts were used additionally by fixing phantoms at both sides of phantom. The acquired imaged at a were reconstructed by applying the iterative reconstruction method (iteration: 2, subset: 28) as well as attenuation correction using the CT, and then VOI was drawn on each image plane so as to measure CT number and SUV and comparatively analyze axial uniformity (A.U=Standard deviation/Average SUV) of PET images. Results: It was found from the above phantom test that, when comparing two cases of whether Teflon insert was fixed or removed, the CT number of cylinder increased from -5.76 HU to 0 HU, while SUV decreased from 24.64 to 24.29 and A.U from 0.064 to 0.052. And the CT number of background water was identified to increase from -6.14 HU to -0.43 HU, whereas SUV decreased from 6.3 to 5.6 and A.U also decreased from 0.12 to 0.10. In addition, as for the patient image, CT number was verified to increase from 53.09 HU to 58.31 HU and SUV decreased from 24.96 to 21.81 when the patient's arm was positioned over the head rather than when it was lowered. Conclusion: When arms up protocol was applied, the SUV of phantom and patient image was decreased by 1.4% and 9.2% respectively. With the present study it was concluded that in case of PET/CT scanning against the whole body of a patient the position of patient's arm was not so much significant. Especially, the scanning under the condition that the arm is raised over to the head gives rise to more probability that the patient is likely to move due to long scanning time that causes the increase of uptake of $^{18}F$-FDG of brown fat at the shoulder part together with increased pain imposing to the shoulder and discomfort to a patient. As regarding consideration all of such factors, it could be rationally drawn that PET/CT scanning could be made with the arm of the subject lowered.

  • PDF