• Title/Summary/Keyword: subsea space

Search Result 67, Processing Time 0.02 seconds

Study on Sebsea Pipeline Thermal Expansion (해저송유관의 열팽창 고찰)

  • 조철희;홍성근
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 1999
  • Nearshore and offshore pipelines are often applied to carry oil, gas, water and combined products. The thermal and pressure gradients of the fluid inside pipeline cause pipeline expansion. This expansion produces stress to connecting structures with pipeline. Should this stress exceeds the yield strength of connecting components or the allowable displacement of the system, a damage can occur. As most pipelines contain hazardous and toxic fluids, the damage usually leads to fatal accidents involving great economic loss as well. Even subsea pipelines can be easily applied to transport liquid type fluid without time and space constraint, they should be designed and maintained carefully to be functional safely during design lifetime. In this paper, various theories estimating pipeline thermal expansion are investigated and the effects of pipe components to expansion are studied.

  • PDF

Review of Pre-grouting Methods for Shield TBM Tunneling in Difficult Grounds (특수지반에서 쉴드TBM 굴착 시 프리그라우팅 적용 사례 고찰)

  • Yoon, Youngmin;Jeong, Hoyoung;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.528-546
    • /
    • 2018
  • Cases of TBM tunnelling have been consistently increasing worldwide. In many recent subsea and urban tunnelling projects, TBM excavation has been preferably considered due to its advantages over drill and blast tunnelling. Difficult ground conditions are highly probable to appear in subsea and urban tunnels because of the shallow working depth and alluvial characteristics. Under the difficult ground conditions, ground reinforcement measures should be considered including grouting, while it is of great importance to select the optimal grout material and injection method to cope with the ground condition. The benefits from TBM excavation, such as fast excavation, increased safety, and reduced environmental impact, can be achieved by applying appropriate ground reinforcement with the minimum overrun of cost and time. In this report, various grouting methods were reviewed so that they can be applied in difficult ground conditions. In addition, domestic and international cases of successful ground reinforcement for difficult grounds were introduced for future reference.

DEA optimization for operating tunnel back analysis (운영 중 터널 역해석을 위한 차분진화 알고리즘 최적화)

  • An, Joon-Sang;Kim, Byung-Chan;Moon, Hyun-Koo;Song, Ki-Il;Su, Guo-Shao
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.183-193
    • /
    • 2016
  • Estimation of the stability of an operating tunnel through a back analysis is a difficult concept to analyze. Specially, when a relatively thick lining is constructed as in case of a subsea tunnel, there will be a limit to the use of displacement-based tunnel back analysis because the corresponding displacement is too small. In this study, DEA is adopted for tunnel back analysis and the feasibility of DEA for back analysis is evaluated. It is implemented in the finite difference code FLAC3D using its built-in FISH language. In addition, the stability of a tunnel lining will be evaluated from the development of displacement-based algorithm and its expanded algorithm with conformity of several parameters such as stress measurements.

A numerical comparative study on induced drainage modelling in 2D hydro-mechanical coupled analysis (이차원 수리-역학적 연계해석 시 유도배수 모델링 방법에 따른 수치해석적 비교연구)

  • You, Kwang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.91-104
    • /
    • 2008
  • In tunnels, safety factor concept has been suggested to estimate their stability quantitatively. It is merely limited in the framework of mechanical analysis. However safety factor concept has not been applied in hydro-mechanical coupled analyses due to their modelling complexity. Recently studies on this topic are being actively made. In this study, induced drainage modelling methods for hydro-mechanical coupled analyses are compared and analyzed to estimate safety factor of a subsea tunnel exactly. To this end, methods both controlling hydraulic characteristic of shotcrete and using a drainage well are considered. Sensitivity analysis were carried out on rock class, thickness of shotcrete, and hydraulic properties of rock mass. As the results of this study, it turned out that the induced drainage modelling using a drainage well would give more reliable results than that of controlling hydraulic characteristic of shotcrete in estimating tunnel stability in hydro-mechanical coupled analyses.

  • PDF

Case study of immersed tunnel for preservation of ecological environment (생태환경 보존을 위한 침매터널 사례연구)

  • Ahn, Sung Kwon;Lee, Hee Up
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.679-697
    • /
    • 2022
  • Having an awareness of the ongoing conception of Honam-Jeju, Korea-Japan, and Korea-China subsea tunnels for accommodating the railway, this paper investigates immersion tube tunnel technology, one of the underwater tunnel construction methods. This paper analyses the current status of immersed tube tunnels according to their location and function. This paper summarises the dredging methods and briefly introduces the muck disposal facility. Also introduced are the case studies where measures were taken to mitigate the impact of dredging on the surrounding marine environment. This paper also explains how the tunnel elements are connected underwater using an immersion joint. This paper classifies the foundation methods into bedding and ground improvement methods and provides summaries, including their environmental impact associated with drill cuttings and cementitious binders.

Development of design charts for concrete lining in a circular shaft (원형수직구 콘크리트라이닝 단면설계도표 개발)

  • Shin, Young-Wan;Kim, Sung-Soo;Kim, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.2
    • /
    • pp.165-175
    • /
    • 2010
  • Recently, requirement of a long subsea tunnel has increased due to political, economical and social demands such as saving of distribution costs, improvement of traffic convenience, and regional development. Road and railroad tunnel need a shaft for construction and ventilation because of increase of tunnel length. Shaft diameter, lining sectional thickness and rebar quantity have to be determined for design of concrete lining in the shaft. A lot of structural analyses are needed for optimal design of concrete lining considering shaft diameter, load conditions and ground conditions. Design charts are proposed by structural analyses for various conditions in this study. A sectional thickness and rebar quantity can be easily determined using the proposed design charts.

Numerical study for the optimum grouting design of subsea tunnels (해저터널의 그라우팅 최적 설계를 위한 수치해석적 연구)

  • Joo, Eun-Jung;Kim, Yong-Kye;Shin, Jong-Ho;Kwon, Oh-Yeob
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.5
    • /
    • pp.349-358
    • /
    • 2010
  • In the long-term, most tunnels suffer from the increase in ground water inflow and in pore water pressure on the lining. To reduce such hydraulic effect, generally grouting methods are adopted. In this paper effective grouting design is proposed based on numerical simulation. To investigate the optimal grouting layout, factors such as relative permeability, grouting thickness, and distance from the lining are considered. The results are analysed in terms of pore water pressure, inflow rate, and earth pressure. It is revealed that the pore water pressure has increased with a decrease in grout permeability, an increase in grouting thickness and an increase in grouting distance. Meanwhile the inflow rate has decreased with a decrease in grout permeability and is inversely proportional to grouting thickness. Effective grouting design guideline are proposed based on this study.

A study on the air leakage performance improvement of duct coupling for temporary ventilation of long subsea tunnel (초장대 해저터널의 공사중 덕트 접속부의 누풍 성능 개선에 관한 연구)

  • Jo, Hyeong-Je;Min, Dea-Kee;Kim, Jong-Won;Lee, Ju-Kyung;Beak, Jong-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.319-333
    • /
    • 2017
  • The construction of long sub-sea tunnel does not provide the favorable condition for the installation of ventilation system to be used during construction due to the constrained construction space. For the ventilation system required during construction, the artificial island where ventilation shaft is located is constructed at some location along the sub-sea tunnel route, which requires a high construction cost. Therefore, it is intended, as much as possible technically, to minimize the construction of artificial island. However, this requires a longer distance between ventilation shafts, there-by causing increased air leakage at the ventilation duct connection points due to the higher fan pressure being required to deliver ventilation air. Previously the air leakage was studied as an important issue. In this study experiments were carried out to develop the improved duct connection method considering various conditions such as, tunnel length, etc. Additionally, its performance results with leakage rates are shown and compared to the "S" class leakage rate of SIA. As a result, the new duct coupling type of improved method is analyzed as applicable to such a 30 km long tunnel with the leakage rate of $1.46mm^2/m^2$, which is better performance than SIA leakage rates.

A Case Study of Test Production of Gas from Hydrate Bearing Sediments on Nankai Trough in Japan (일본 난카이 해구 가스하이드레이트 퇴적층으로부터의 가스 시험생산 사례분석)

  • Kim, A-Ram;Lee, Jong-Won;Kim, Hyung-Mok
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.133-143
    • /
    • 2015
  • Gas hydrate is a solid substance composed of natural gas constrained in water molecules under low temperature and high pressure conditions. The existence of hydrates has been reported to be world-widely distributed, mainly at permafrost and deep ocean floor. Test productions of small amount of natural gas from the on-shore permafrost have been accomplished in U.S.A and Canada, but, world-first and the only production case from off-shore hydrate bearing sediments was in Nankai trough, Japan. In this study, we introduce key technologies in gas production from hydrates by analyzing the Japanese off-shore gas production project in Nankai trough in terms of depressurization- induced dissociation so as to utilize planned domestic gas production test in Ulleung basin.

Numerical analysis of suction pile behavior with different loading locations and displacement inclinations

  • Kim, Dongwook;Lee, Juhyung;Nsabimana, Ernest;Jung, Young-Hoon
    • Ocean Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.205-215
    • /
    • 2012
  • Recently, interest of offshore structure construction in South Korea is growing as the land space becomes limited for further development and the renewable energy grows to be more attractive for the replacement of the fossil energy. In order for the optimal construction of optimum offshore floating structures, development of safe and economical offshore foundation technologies is a priority. In this study, the large-deformation behavior of a suction pile, which markets are rapidly growing nowadays, is analyzed for three different loading locations (top, middle, and bottom of the suction pile) with three different displacement inclinations (displacement controlled with displacement inclinations of 0, 10, and 20 degrees from the horizontal). The behavior analysis includes quantifications of maximum resistances, translations, and rotation angles of the suction pile. The suction pile with its diameter of 10 m and height of 25 m is assumed to be embedded in clay, sand, and multi layers of subsea foundation. The soil properties of the clay, sand, and multi layers were determined based on the results of the site investigations performed in the West sea of South Korea. As analyses results, the maximum resistance was observed at the middle of the suction pile with the displacement inclination of 20 degrees, while the translations and rotations resulting from the horizontal and inclined pullouts were not significant until the horizontal components of movements at the loading points reach 1.0 m.