• 제목/요약/키워드: submodular function

검색결과 3건 처리시간 0.015초

Social-Aware Collaborative Caching Based on User Preferences for D2D Content Sharing

  • Zhang, Can;Wu, Dan;Ao, Liang;Wang, Meng;Cai, Yueming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권3호
    • /
    • pp.1065-1085
    • /
    • 2020
  • With rapid growth of content demands, device-to-device (D2D) content sharing is exploited to effectively improve the service quality of users. Considering the limited storage space and various content demands of users, caching schemes are significant. However, most of them ignore the influence of the asynchronous content reuse and the selfishness of users. In this work, the user preferences are defined by exploiting the user-oriented content popularity and the current caching situation, and further, we propose the social-aware rate, which comprehensively reflects the achievable contents download rate affected by the social ties, the caching indicators, and the user preferences. Guided by this, we model the collaborative caching problem by making a trade-off between the redundancy of caching contents and the cache hit ratio, with the goal of maximizing the sum of social-aware rate over the constraint of limited storage space. Due to its intractability, it is computationally reduced to the maximization of a monotone submodular function, subject to a matroid constraint. Subsequently, two social-aware collaborative caching algorithms are designed by leveraging the standard and continuous greedy algorithms respectively, which are proved to achieve different approximation ratios in unequal polynomial-time. We present the simulation results to illustrate the performance of our schemes.

Profit-Maximizing Virtual Machine Provisioning Based on Workload Prediction in Computing Cloud

  • Li, Qing;Yang, Qinghai;He, Qingsu;Kwak, Kyung Sup
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권12호
    • /
    • pp.4950-4966
    • /
    • 2015
  • Cloud providers now face the problem of estimating the amount of computing resources required to satisfy a future workload. In this paper, a virtual machine provisioning (VMP) mechanism is designed to adapt workload fluctuation. The arrival rate of forthcoming jobs is predicted for acquiring the proper service rate by adopting an exponential smoothing (ES) method. The proper service rate is estimated to guarantee the service level agreement (SLA) constraints by using a diffusion approximation statistical model. The VMP problem is formulated as a facility location problem. Furthermore, it is characterized as the maximization of submodular function subject to the matroid constraints. A greedy-based VMP algorithm is designed to obtain the optimal virtual machine provision pattern. Simulation results illustrate that the proposed mechanism could increase the average profit efficiently without incurring significant quality of service (QoS) violations.

무기할당을 위한 계층적 레이지 그리디 알고리즘 (Hierarchical Lazy Greedy Algorithm for Weapon Target Assignment)

  • 정혜선
    • 한국군사과학기술학회지
    • /
    • 제23권4호
    • /
    • pp.381-388
    • /
    • 2020
  • Weapon target assignment problem is an essential technology for automating the operator's rapid decision-making support in a battlefield situation. Weapon target assignment problem is a kind of the optimization problem that can build up an objective function by maximizing the number of threat target destructed or maximizing the survival rate of the protected assets. Weapon target assignment problem is known as the NP-Complete, and various studies have been conducted on it. Among them, a greedy heuristic algorithm which guarantees (1-1/e) approximation has been considered a very practical method in order to enhance the applicability of the real weapon system. In this paper, we formulated the weapon target assignment problem for supporting decision-making at the level of artillery. The lazy strategy based on hierarchical structure is proposed to accelerate the greedy algorithm. By experimental results, we show that our algorithm is more efficient in processing time and support the same level of the objective function value with the basic greedy algorithm.