• Title/Summary/Keyword: subcutaneous adipose tissue

Search Result 133, Processing Time 0.026 seconds

Fatty Acid Profiles of Various Muscles and Adipose Tissues from Fattening Horses in Comparison with Beef Cattle and Pigs

  • He, M.L.;Ishikawa, S.;Hidari, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.11
    • /
    • pp.1655-1661
    • /
    • 2005
  • The present studies were designed to provide new information on fatty acid profiles of various muscles and adipose tissues of fattening horses in comparison with beef cattle and pigs. In the first study, the lipids were extracted respectively from subcutaneous, intermuscular adipose tissues, longissimus dorsi and biceps femoris muscles of fattening Breton horses (n = 8) with an average body weight of 1,124 kg. In the second study, the lipids were extracted from subcutaneous, intermuscular adipose tissues and longissimus dorsi muscle of fattening horses (n = 13), Japanese Black beef cattle (n = 5), Holstein steers (n = 5) and fattening pigs (n = 5). The fatty acids in the lipid samples were determined by gas chromatography after methylation by a combined base/acid methylation method. It was found that the lipids from horse subcutaneous and intermuscular adipose tissues contained more (p<0.05) polyunsaturated fatty acids (PUFA) which were mainly composed of linoleic acid (C18:2) and linolenic acid (C18:3) than those in the muscles. The weight percent of conjugated linoleic acids (CLA cis 9, trans 11) in lipids from biceps femoris muscle was 0.22%, which was higher (p<0.05) than that from the other depots. The horse lipids were higher (p<0.05) in PUFA but lower (p<0.05) in SFA and MUFA in comparison with those of the cattle and pigs. The percentage of C18:2 or C18:3 fatty acid in the horse lipids were respectively 2-8 fold or 5-18 fold higher (p<0.05) than those of the cattle and pigs. The percentages of CLA (cis 9, trans 11) in the horse lipids (0.14-0.16%) were very close to those of the pigs (0.18-0.19%) but much lower (p<0.05) than those of the Japanese Black beef cattle (0.55-0.94%) and Holstein steers (0.46-0.71%). The results indicated that the fatty acid profiles of lipids from different muscle and adipose tissues of fattening horses differed significantly. In comparison with that of the beef cattle and pigs, the horse lipids contained more C18:2 and C18:3 but less CLA.

Fat Graft with Allograft Adipose Matrix and Magnesium Hydroxide-Incorporated PLGA Microspheres for Effective Soft Tissue Reconstruction

  • Dae-Hee Kim;Da-Seul Kim;Hyun-Jeong Ha;Ji-Won Jung;Seung-Woon Baek;Seung Hwa Baek;Tae-Hyung Kim;Jung Chan Lee;Euna Hwang;Dong Keun Han
    • Tissue Engineering and Regenerative Medicine
    • /
    • v.19
    • /
    • pp.553-563
    • /
    • 2022
  • BACKGROUND: Autologous fat grafting is one of the most common procedures used in plastic surgery to correct soft tissue deficiency or depression deformity. However, its clinical outcomes are often suboptimal, and lack of metabolic and architectural support at recipient sites affect fat survival leading to complications such as cyst formation, calcification. Extracellular matrix-based scaffolds, such as allograft adipose matrix (AAM) and poly(lactic-co-glycolic) acid (PLGA), have shown exceptional clinical promise as regenerative scaffolds. Magnesium hydroxide (MH), an alkaline ceramic, has attracted attention as a potential additive to improve biocompatibility. We attempted to combine fat graft with regenerative scaffolds and analyzed the changes and viability of injected fat graft in relation to the effects of injectable natural, and synthetic (PLGA/MH microsphere) biomaterials. METHODS: In vitro cell cytotoxicity, angiogenesis of the scaffolds, and wound healing were evaluated using human dermal fibroblast cells. Subcutaneous soft-tissue integration of harvested fat tissue was investigated in vivo in nude mouse with random fat transfer protocol Fat integrity and angiogenesis were identified by qRT-PCR and immunohistochemistry. RESULTS: In vitro cell cytotoxicity was not observed both in AAM and PLGA/MH with human dermal fibroblast. PLGA/MH and AAM showed excellent wound healing effect. In vivo, the AAM and PLGA/MH retained volume compared to that in the only fat group. And the PLGA/MH showed the highest angiogenesis and anti-inflammation. CONCLUSION: In this study, a comparison of the volume retention effect and angiogenic ability between autologous fat grafting, injectable natural, and synthetic biomaterials will provide a reasonable basis for fat grafting.

Green cabbage supplementation influences the gene expression and fatty acid levels of adipose tissue in Chinese Wanxi White geese

  • Bin Wang;Zhengquan Liu;Xingyong Chen;Cheng Zhang;Zhaoyu Geng
    • Animal Bioscience
    • /
    • v.36 no.10
    • /
    • pp.1558-1567
    • /
    • 2023
  • Objective: Dietary green cabbage was evaluated for its impact on fatty acid synthetic ability in different adipose tissues during fattening of Wanxi White geese. Methods: A total of 256 Wanxi White geese at their 70 days were randomly allocated into 4 groups with 4 replicates and fed 0%, 15%, 30%, and 45% fresh green cabbage (relative to dry matter), respectively, in each group. Adipose tissues (subcutaneous and abdominal fat), liver and blood were collected from 4 birds in each replicate at their 70, 80, 90, and 100 days for fatty acid composition, relative gene expression and serum lipid analysis. Two-way or three-way analysis of variance was used for analysis. Results: The contents of palmitic acid (C16:0), palmitoleic acid (C16:1), linoleic acid (C18:2), and alpha-linolenic acid (C18:3) were feeding time dependently increased. The C16:0 and stearic acid (C18:0) were higher in abdominal fat, while C16:1, oleic acid (C18:1), and C18:2 were higher in subcutaneous fat. Geese fed 45% green cabbage exhibited highest level of C18:3. Geese fed green cabbage for 30 d exhibited higher level of C16:0 and C18:0 in abdominal fat, while geese fed 30% to 45% green cabbage exhibited higher C18:3 in subcutaneous fat. The expression of Acsl1 (p = 0.003) and Scd1 (p<0.0001) were decreased with green cabbage addition. Interaction between feeding time and adipose tissue affected elongation of long-chain fatty acids family member 6 (Elovl6), acyl-CoA synthetase longchain family member 1 (Acsl1), and stearoly-coA desaturase 1 (Scd1) gene expression levels (p = 0.013, p = 0.003, p = 0.005). Feeding time only affected serum lipid levels of free fatty acid and chylomicron. Higher contents of C16:0, C18:1, and C18:3 were associated with greater mRNA expression of Scd1 (p<0.0001), while higher level of C18:2 was associated with less mRNA expression of Scd1 (p<0.0001). Conclusion: Considering content of C18:2 and C18:3, 30% addition of green cabbage could be considered for fattening for 30 days in Wanxi White geese.

The Effectiveness of 448-kHz Capacitive Resistive Monopolar Radiofrequency for Subcutaneous Fat Reduction in a Porcine Model

  • Kwon, Tae-Rin;Lee, Sung-Eun;Kim, Jong Hwan;Jeon, Yong Jae;Jang, You Na;Yoo, Kwang Ho;Kim, Beom Joon
    • Medical Lasers
    • /
    • v.8 no.2
    • /
    • pp.64-73
    • /
    • 2019
  • Background and Objectives The effectiveness of many physiotherapy modalities in reducing subcutaneous fat has been investigated in numerous previous studies. However, to the best of our knowledge, there have been no attempts to determine the effectiveness of physiotherapy modalities in body contouring. The present report determined the effect of 448-kHz capacitive resistive monopolar radiofrequency (CRMRF) in a porcine model. Materials and Methods This study investigated the effect of selective destruction of the subcutaneous fat layer in abdominal fat tissue using CRMRF. The effects of two types of CRMRF (capacitive electric transfer (CET) and resistive electric transfer (RET)) treatment were evaluated using regular digital photography in addition to thermal imaging evaluation, ultrasound measurement, hematological evaluation, and histologic analyses (H&E (hematoxylin and eosin), Oil red O, and immunohistochemistry staining). Results Preclinical evaluation was performed to obtain the data for comparison of the safety and efficacy of the subcutaneous fat reduction after applying CRMRF using CET and RET. After treatment, the thermal transmission was effective, and a 42-47℃ temperature change was observed in the fat layer while an approximately temperature of 42℃ was confirmed on the skin surface. Moreover, after the application of both types of CRMRF treatment, fibrotic septa were observed in the adipose tissue induced by heat at the treatment sites. TUNEL staining was also performed to confirm the process of apoptosis in the adipocytes. Conclusion These results suggest that both CET and RET for CRMRF treatment are safe and effective for subcutaneous fat reduction in a porcine model.

BONE REGENERATION WITH ADIPOSE TISSUE-DERIVED MESENCHYMAL STEM CELL AND HA/TCP (HA/TCP 골이식재상에 이식된 지방유래 줄기세포의 골모세포로의 분화 및 골형성에 대한 연구)

  • Rim, Jae-Suk;Gwon, Jong-Jin;Jang, Hyon-Seok;Lee, Eui-Seok;Jeong, You-Min;Lee, Tai-Hyung;Park, Jeong-Kyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.2
    • /
    • pp.97-106
    • /
    • 2010
  • Aim of the study: An alternative source of adult stem cells that could be obtained in large quantities, under local anesthesia, with minimal discomfort would be advantageous. Adipose tissue could be processed to obtain a fibroblast-like population of cells or adipose tissue-derived stromal cells (ATSCs). This study was performed to confirm the availability of ATSCs in bone tissue engineering. Materials amp; Methods: In this study, adipose tissue-derived mesenchymal stem cell was extracted from the liposuctioned abdominal fat of 24-old human and cultivated, and the stem cell surface markers of CD 105 and SCF-R were confirmed by immunofluorescent staining. The proliferation of bone marrow mesenchymal stem cell and ATSCs were compared, and evaluated the osteogenic differentiation of ATSCs in a specific osteogenic induction medium. Osteogenic differentiation was assessed by von Kossa and alkaline phosphatase staining. Expression of osteocyte specific BMP-2, ALP, Cbfa-1, Osteopontin and osteocalcin were confirmed by RT-PCR. With differentiation of ATSCs, calcium concentration was assayed, and osteocalcin was evaluated by ELISA (Enzyme-linked immunosorbant assay). The bone formation by 5-week implantation of HA/TCP block loaded with bone marrow mesenchymal stem cells and ATSCs in the subcutaneous pocket of nude mouse was evaluated by histologic analysis. Results: ATSCs incubated in the osteogenic medium were stained positively for von Kossa and alkaline phosphatase staining. Expression of osteocyte specific genes was also detected. ATSCs could be easily identified through fluorescence microscopy, and bone formation in vivo was confirmed by using ATSC-loaded HA/TCP scaffold. Conclusions: The present results show that ATSCs have an ability to differentiate into osteoblasts and formed bone in vitro and in vivo. So ATSCs may be an ideal source for further experiments on stem cell biology and bone tissue engineering.

Proteomic Functional Characterization of Bovine Stromal Vascular Cells from Omental, Subcutaneous and Intramuscular Adipose Depots

  • Rajesh, Ramanna Valmiki;Kim, Seong-Kon;Park, Mi-Rim;Nam, Jin-Seon;Kim, Nam-Kuk;Kwon, Seulemina;Yoon, Du-Hak;Kim, Tae-Hun;Lee, Hyun-Jeong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.1
    • /
    • pp.110-124
    • /
    • 2011
  • Anatomically separate fat depots differ in size, function, and contribution to pathological states such as the metabolic syndrome. We isolated pre-adipocytes from different adipose depots, omental, subcutaneous and intramuscular, of beef cattle, and cultured in vitro to determine the basis for the variations and attribute these variations to the inherent properties of adipocyte progenitors. The proliferating cells from all depots before the confluence were harvested and the proteome was analyzed by a functional proteomic approach, involving 2-DE and MALDI-TOF/TOF. More than 252 protein spots were identified, selected and analyzed by Image Master (ver 7.0) and MALDI-TOF/TOF. Further, our analysis showed that there were specific differences in proteome expression patterns among proliferating precursor cells from the three depots. Sixteen proteins were found to be differentially expressed and these were identified as proteins involved in cellular processes, heat shock/chaperones, redox proteins, cytoskeletal proteins and metabolic enzymes. The results also enabled us to understand the basic roles of these proteins in different inherent properties exhibited by adipose tissue depots.

A Case of Sparganosis in the Chest Wall (흉벽에 발생한 Sparganosis;1례 보고)

  • 김상익
    • Journal of Chest Surgery
    • /
    • v.25 no.11
    • /
    • pp.1240-1244
    • /
    • 1992
  • Human sparganosis caused by Sparganum mansoni, the larval plerocercoid worm of the genus Spirometra, is not uncommon in Korea and is mostly found in subcutaneous or adipose tissue of the abdominal, thoracic wall and inguinal region, but is rarely found in the orbital cavity, brain and breast. It, at present, is a surgical disease because its diagnosis depends almost on the demonstration of the larva[e] from lesion or finding the worm section in surgical pathology specimens. We experienced a case of human sparganosis from a 48 years old woman who had a history of eating a raw frog. We report the case and review the related literatures.

  • PDF

Development and growth of the temporal fascia: a histological study using human fetuses

  • Kei Kitamura;Satoshi Ishizuka;Ji Hyun Kim;Hitoshi Yamamoto;Gen Murakami;Jose Francisco Rodriguez-Vazquez;Shin-ichi Abe
    • Anatomy and Cell Biology
    • /
    • v.57 no.2
    • /
    • pp.288-293
    • /
    • 2024
  • The temporal fascia is a double lamina sandwiching a thick fat layer above the zygomatic bony arch. To characterize each lamina, their developmental processes were examined in fetuses. We observed histological sections from 22 half-heads of 10 mid-term fetuses at 14-18 weeks (crown-rump length, 95-150 mm) and 12 near-term fetuses at 26-40 weeks (crown-rump length, 215-334 mm). The superficial lamina of the temporal fascia was not evident at mid-term. Instead, a loose subcutaneous tissue was attached to the thin, deep lamina of the temporal fascia covering the temporalis muscle. At near-term, the deep lamina became thick, while the superficial lamina appeared and exhibited several variations: i) a mono-layered thick membrane (5 specimens); ii) a multi-layered membranous structure (6) and; iii) a cluster of independent thick fasciae each of which were separated by fatty tissues (1). In the second and third patterns, fatty tissue between the two laminae was likely to contain longitudinal fibrous bands in parallel with the deep lamina. Varying proportions of the multi-layered superficial lamina were not attached to the zygomatic arch, but extended below the bony arch. Whether or not lobulation or septation of fatty tissues was evident was not dependent on age. The deep lamina seemed to develop from the temporalis muscle depending on the muscle contraction. In contrast, the superficial lamina developed from subcutaneous collagenous bundles continuous to the cheek. Therein, a difference in development was clearly seen between two categories of the fasciae.

Differential Expression of PPARγ, FASN, and ACADM Genes in Various Adipose Tissues and Longissimus dorsi Muscle from Yanbian Yellow Cattle and Yan Yellow Cattle

  • Ji, Shuang;Yang, Runjun;Lu, Chunyan;Qiu, Zhengyan;Yan, Changguo;Zhao, Zhihui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.1
    • /
    • pp.10-18
    • /
    • 2014
  • The objective of this study was to investigate the correlation between cattle breeds and deposit of adipose tissues in different positions and the gene expressions of peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$), fatty acid synthase (FASN), and Acyl-CoA dehydrogenase (ACADM), which are associated with lipid metabolism and are valuable for understanding the physiology in fat depot and meat quality. Yanbian yellow cattle and Yan yellow cattle reared under the same conditions display different fat proportions in the carcass. To understand this difference, the expression of $PPAR{\gamma}$, FASN, and ACADM in different adipose tissues and longissimus dorsi muscle (LD) in these two breeds were analyzed using the Real-time quantitative polymerase chain reaction method (qRT-PCR). The result showed that $PPAR{\gamma}$ gene expression was significantly higher in adipose tissue than in LD in both breeds. $PPAR{\gamma}$ expression was also higher in abdominal fat, in perirenal fat than in the subcutaneous fat (p<0.05) in Yanbian yellow cattle, and was significantly higher in subcutaneous fat in Yan yellow cattle than that in Yanbian yellow cattle. On the other hand, FASN mRNA expression levels in subcutaneous fat and abdominal fat in Yan yellow cattle were significantly higher than that in Yanbian yellow cattle. Interestingly, ACADM gene shows greater fold changes in LD than in adipose tissues in Yan yellow cattle. Furthermore, the expressions of these three genes in lung, colon, kidney, liver and heart of Yanbian yellow cattle and Yan yellow cattle were also investigated. The results showed that the highest expression levels of $PPAR{\gamma}$ and FASN genes were detected in the lung in both breeds. The expression of ACADM gene in kidney and liver were higher than that in other organs in Yanbian yellow cattle, the comparison was not statistically significant in Yan yellow cattle.

Cloning and Expression of Lactate Dehydrogenase H Chain Gene in Adipose Tissues of Korean Cattle

  • Kim, H.H.;Seol, M.B.;Jeon, D.H.;Sun, S.S.;Kim, K.H.;Choi, Y.J.;Baik, M.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.12
    • /
    • pp.1670-1674
    • /
    • 2001
  • To understand molecular mechanisms that regulate deposition and release of intramuscular fat, a fasting-induced clone was identified by differential screening from cDNA library of adipose tissues of Korean cattle. The clone had a total length of 1,319 nucleotides coding for 334 amino acids. It was identified as one encoding L-lactate dehydrogenase H chain (LDH-B). Comparison of the deduced amino acid sequences of bovine LDH-B with those of pig, human, rat, and mouse showed 98%, 98%, 97%, and 96% identity, respectively. Food deprivation for 48 h increased mRNA levels of LDH-B gene in adipose tissues of Korean cattle compared to fed- and 6 h refed- tissues. The expression of obese mRNA was examined for individual adipose tissue from several fat depots. Fasting induced expression of LDH-B gene in subcutaneous adipose tissues, but it did not affect expression levels in abdominal, perirenal and intramuscular tissues. Results demonstrate that induction of LDH-B gene during fasting may represent a metabolic shift from anaerobic state to aerobic predominance in fasted adipose tissues and that its responses to fasting are different among several adipose tissues.