• Title/Summary/Keyword: subcutaneous adipocyte

Search Result 40, Processing Time 0.035 seconds

Physiological Characteristics and Anti-obesity Effect of Lactobacillus plantarum K10

  • Kim, Seulki;Huang, Eunchong;Park, Soyoung;Holzapfel, Wilhelm;Lim, Sang-Dong
    • Food Science of Animal Resources
    • /
    • v.38 no.3
    • /
    • pp.554-569
    • /
    • 2018
  • This study aimed to investigate the physiological characteristics and anti-obesity effects of Lactobacillus plantarum K10. The ${\alpha}-amylase$ inhibitory activity, ${\alpha}-glucosidase$ inhibitory activity, and lipase inhibitory activity of L. plantarum K10 was $94.66{\pm}4.34%$, $99.78{\pm}0.12%$, and $87.40{\pm}1.41%$, respectively. Moreover, the strain inhibited the adipocyte differentiation of 3T3-L1 cells ($32.61{\pm}8.32%$) at a concentration of $100{\mu}g/mL$. In order to determine its potential for use as a probiotic, we investigated the physiological characteristics of L. plantarum K10. L. plantarum K10 was resistant to gentamycin, kanamycin, streptomycin, ampicillin, ciprofloxacin, tetracycline, vancomycin, and chloramphenicol. It also showed higher Leucine arylamidase, Valine arylamidase, and ${\beta}-galactosidase$ activities. Moreover, it was comparatively tolerant to bile juice and acid, exhibiting resistance to Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus with rates of 90.71%, 11.86%, 14.19%, and 23.08%, respectively. The strain did not produce biogenic amines and showed higher adhesion to HT-29 cells compared to L. rhamnosus GG. As a result of the animal study, L. plantarum K10 showed significantly lower body weight compared to the high-fat diet group. The administration of L. plantarum K10 resulted in a reduction of subcutaneous fat mass and mesenteric fat mass compared to the high-fat diet (HFD) group. L. plantarum K10 also showed improvement in gut permeability compared to the HFD positive control group. These results demonstrate that L. plantarum K10 has potential as a probiotic with anti-obesity effects.

The beneficial effect of glycerophosphocholine to local fat accumulation: a comparative study with phosphatidylcholine and aminophylline

  • Kim, Go Woon;Chung, Sung Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.4
    • /
    • pp.333-339
    • /
    • 2021
  • Injection lipolysis or mesotherapy gained popularity for local fat dissolve as an alternative to surgical liposuction. Phosphatidylcholine (PPC) and aminophyl-line (AMPL) are commonly used compounds for mesotherapy, but their efficacy and safety as lipolytic agents have been controversial. Glycerophosphocholine (GPC) is a choline precursor structurally similar to PPC, and thus introduced in aesthetics as an alternative for PPC. This study aimed to evaluate the effects of GPC on adipocytes differentiation and lipolysis and compared those effects with PPC and AMPL using in vitro and in vivo models. Adipogenesis in 3T3-L1 was measured by Oil Red O staining. Lipolysis was assessed by measuring the amount of glycerol released in the culture media. To evaluate the lipolytic activity of GPC on a physiological condition, GPC was subcutaneously injected to one side of inguinal fat pads for 3 days. Lipolytic activity of GPC was assessed by hematoxylin and eosin staining in adipose tissue. GPC significantly suppressed adipocyte differentiation of 3T3-L1 in a concentration-dependent manner (22.3% inhibition at 4 mM of GPC compared to control). Moreover, when lipolysis was assessed by glycerol release in 3T3-L1 adipocytes, 6 mM of GPC stimulated glycerol release by two-fold over control. Subcutaneous injection of GPC into the inguinal fat pad of mice significantly reduced the mass of fat pad and the size of adipocytes of injected site, and these effects of GPC were more prominent over PPC and AMPL. Taken together, these results suggest that GPC is the potential therapeutic agent as a local fat reducer.

Effects of Polyclonal Antibodies to Abdominal and Subcutaneous Adipocytes on Ruminal Fermentation Patterns and Blood Metabolites in Korean Native Steers (한우 복강 및 피하지방 감소 다클론 항체가 반추위 발효패턴 및 혈액 대사물질에 미치는 영향)

  • Choi, Chang-Weon;Baek, Kyung-Hoon;Kim, Sung-Jin;Oh, Young-Kyoon;Hong, Seong-Koo;Kwon, Eung-Gi;Song, Man-Kang;Choi, Chang-Bon
    • Journal of Animal Science and Technology
    • /
    • v.51 no.3
    • /
    • pp.231-240
    • /
    • 2009
  • Sixteen ruminally cannulated Korean native steers (Hanwoo; $626.2\pm47.72$ kg) were used to investigate the effects of polyclonal antibodies against abdominal (AAb) and subcutaneous adipocyte membrane proteins (SAb) on ruminal fermentation patterns and blood metabolites. The body weight (BW) of Hanwoo was decreased 2-weeks after AAb and SAb injection, BW reduction was also observed in control and non-immunized serum groups, indicating that stress induced by other factors (e.g. blood sampling etc.) rather than antibodies injection may affect the BW reduction. Antibodies treatment did not affect (P > 0.05) rumen pH, volatile fatty acids and ammonia-N concentration. The ranges were similar with typical ranges of those in Hanwoo. Compared with control, blood urea N concentration was decreased in AAb group and increased (P < 0.05) in SAb group before antibodies treatment. However, none of the groups were significantly (P > 0.05) affected at 2- or 4-weeks after the treatment. Concentration of plasma glucose in the non-immunized serum group was significantly higher (P < 0.05) than the other groups at 0-week after treatment. However, antibodies treatment did not affect the concentration of plasma glucose. Concentration of plasma triglyceride showed no difference (P > 0.05) between the groups and ranged from 11.4 to 19.9 mg/dl, which is the perfect range of plasma triglyceride of Hanwoo fed concentrate based diets. In conclusion, these results may indicate that the present AAb and SAb have safety in nutritional physiological metabolism in Hanwoo. Further study on in vivo fat reduction of the antibodies against abdominal and subcutaneous adipocytes PMPs of Hanwoo is required for inedible fat-reduced high quality beef production.

Comparative Analysis about the Effect of Isolated Phosphatidylcholine and Sodium Deoxycholate for the Viability of Adipocyte (Phosphatidylcholine과 Sodium Deoxycholate가 지방세포 생존에 미치는 영향의 비교 분석)

  • Rha, Eun-Young;Kang, Jo-A;Lee, Jung-Ho;Oh, Deuk-Young;Seo, Je-Won;Moon, Suk-Ho;Ahn, Sang-Tae;Rhie, Jong-Won
    • Archives of Plastic Surgery
    • /
    • v.37 no.5
    • /
    • pp.531-534
    • /
    • 2010
  • Purpose: Lipobean$^{(R)}$s, widely used in lipodissolving techniques, contain phosphatidylcholine and sodium deoxycholate as its main substances. They have been approved only as medication for liver disease by the FDA. However, they have been used under various clinical settings without exact knowledge of its action mechanism. The authors designed an in vitro study to analyze the effects of different concentrations of phosphatidylcholine and sodium deoxycholate on adipocytes and other types of cells. Methods: Human adipose-derived stem cell were cultured and induced to differentiate into adipocytes. Fibroblasts extracted from human inferior turbinate tissue, and MC3T3-E1 osteoblast lines were cultured. Phosphatidylcholine solution dissolved with ethanol was applied to the culture medium at differing concentrations (1, 4, 7, 10 mg/mL). The sodium deoxycholate solution dissolved in DMSO applied to the medium at differing concentrations (0.07, 0.1. 0.4. 0.7 mg/mL). Cells were dispersed at a concentration of $5{\times}10^3$ cells/well in 24 well plates, and surviving cells were calculated 1 day after the application using a CCK-8 kit. Results: The number of surviving cells of adipocytes, fibroblasts and osteoblasts decreased as the concentration of sodium deoxycholate increased. However, all types of cells that had been processed in a phosphatidylcholine showed a cell survival rate of over 70% at all concentrations. Conclusion: This study shows that sodium deoxycholate is the more major factor in destroying adipocytes, and it is also toxic to the other cells. Therefore, we conclude that care must be taken when using Lipobean$^{(R)}$s as a method of reducing adipose tissue, for its toxicity may destroy other nontarget cells existing in the subcutaneous tissue layer.

WBCEx1 Reduces Feeding Efficiency Ratio and Visceral Obesity in Obese Mice Induced by High Fat Diet (고지방식이 비만마우스에서 월비가출탕(越婢加朮湯)이 식이효율과 내장지방에 미치는 영향)

  • An, Jeong-Ran;Kang, Yeon-Kyeong;Chang, Dong-Ho;Lee, In-Seon;Shin, Soon-Shik;Jeong, Hae-Gyeong;Lee, Hee-Young;Lee, Hye-Rim
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.21 no.1
    • /
    • pp.1-22
    • /
    • 2011
  • Objectives : This study was undertaken to verify the effects of Wolbigachul-tang1(WBCEx1) on obesity using high fat diet-induced male mice and to investigate the molecular mechanisms involved. Methods : 8-week old C57BL/6 mice were divided into 5 groups; lean control, obese control, WBCEx1, 2, 3. After mice were treated with WBCEx1(water extract), 2(30% ethanol extract), 3(water extract; Ephedra sinica Stapf., Gypsum fibrosum) for 12 weeks, body weight gain, feeding efficiency ratio, plasma lipid and glucose metabolism, the messenger RNA(mRNA) expression of peroxisome proliferator activated receptor(PPAR)$\alpha$ target genes were measured. In addition, $PPAR{\alpha}$ target gene expression was examined in liver, white adipose tissue and skeletal muscle. Results : 1. WBCEx1-treated mice had significantly lower body weight gain and feeding efficiency ratio. 2. Consistent with the effects on body weight gain, WBCEx1 decreased the weights of epididymal and retroperitoneal white adipose tissue, inguinal subcutaneous adipose tissue, and brown adipose tissue. 3. WBCEx1 significantly decreased plasma triglyceride and total cholesterol levels. 4. The size of adipocytes were significantly decreased by WBCEx1, whereas the adipocyte number per unit area was increased. Hepatic lipid accumulation was decreased by WBCEx1. 5. WBCEx1 did not affect the mRNA expression of $PPAR{\alpha}$ target genes in liver, adipose tissue, and skeletal muscle. 6. Plasma asparate aminotransferase(AST), alanine aminotransferase(ALT), blood urea nitrogen(BUN) and creatine concentrations were in the physiological range. Liver and kidney weights were significantly lower following WBCEx treatment compared with obese controls, indicating that WBCEx does not show any toxic effects on liver and kidney. Conclusions : These results suggest that WBCEx1-induced body weight reduction is associated with appetite control and mediated by a mechanism other than the activation of $PPAR{\alpha}$.

Anti-obesity Effects of Sparassis crispa on High-fat Diet-induced Obese Mice (고지방식이로 유도한 비만 흰쥐에 대한 꽃송이 버섯의 항비만 효과)

  • Lee, Mi Ra;Hou, Jing Gang;Begum, Shahnaz;Wang, Yun Bo;Oh, Deuk Sil;Wi, An Jin;Yoon, Byung Sun;Sung, Chang Keun
    • Journal of Life Science
    • /
    • v.24 no.9
    • /
    • pp.952-958
    • /
    • 2014
  • The present study investigated the anti-obesity effects of Sparassis crispa (SC) on mice fed a high-fat (HF, 45 kcal% fat) diet. Mice were fed either a normal control diet and an HF diet or an HF diet supplemented with SC (1%, 3%, and 5%) for 12 weeks. The consumption of an HF diet compared to the NC group resulted in increases in body weight, the food efficiency ratio (FER), retroperitoneal and subcutaneous fat weights, cholesterol and triglyceride levels, fecal fat, and liver lipids. However, the administration of SC significantly decreased body weight gain, food intake, FER, cholesterol and triglyceride levels, and liver lipids in a dose-dependent manner. In particular, treatment with 5% SC significantly reduced the occurrence of fatty liver deposits and steatosis, which are associated with the increased adipocyte size in mice fed an HF diet. Therefore, these results suggested that dietary supplementation with SC exerts anti-obesity effects and could be used as a functional food to control obesity.

Effects of dietary n-6:n-3 polyunsaturated fatty acid ratio on growth performance, blood indexes, tissue fatty acid composition and the expression of peroxisome proliferator-activated receptor gamma signaling related genes in finishing pigs

  • Chen, Jing;Cui, Hongze;Liu, Xianjun;Li, Jiantao;Zheng, Jiaxing;Li, Xin;Wang, Liyan
    • Animal Bioscience
    • /
    • v.35 no.5
    • /
    • pp.730-739
    • /
    • 2022
  • Objective: This study investigated the effects of dietary n-6:n-3 polyunsaturated fatty acid (PUFA) ratio on growth performance, blood indexes, tissue fatty acid composition and the gene expression in finishing pigs. Methods: Seventy-two crossbred ([Duroc×Landrace]×Yorkshire) barrows (68.5±1.8 kg) were fed one of four isoenergetic and isonitrogenous diets with n-6:n-3 PUFA ratios of 2:1, 3:1, 5:1, and 8:1. Results: Average daily gain, average daily feed intake and gain-to-feed ratio had quadratic responses but the measurements were increased and then decreased (quadratic, p<0.05). The concentrations of serum triglyceride, total cholesterol and interleukin 6 were linearly increased (p<0.05) with increasing of dietary n-6:n-3 PUFA ratio, while that of high-density lipoprotein cholesterol tended to decrease (p = 0.062), and high-density lipoprotein cholesterol:low-density lipoprotein cholesterol ratio and leptin concentration were linearly decreased (p<0.05). The concentration of serum adiponectin had a quadratic response but the measurement was decreased and then increased (quadratic, p<0.05). The proportion of C18:3n-3 was linearly decreased (p<0.05) in the longissimus thoracis (LT) and subcutaneous adipose tissue (SCAT) as dietary n-6:n-3 PUFA ratio increasing, while the proportion of C18:2n-6 and n-6:n-3 PUFA ratio were linearly increased (p<0.05). In addition, the expression levels of peroxisome proliferator-activated receptor gamma (PPARγ) and lipoprotein lipase in the LT and SCAT, and adipocyte fatty acid binding protein and hormone-sensitive lipase (HSL) in the SCAT had quadratic responses but the measurements were increased and then decreased (quadratic, p<0.05). The expression of HSL in the LT was linearly decreased (p<0.05) with increasing of dietary n-6:n-3 PUFA ratio. Conclusion: Dietary n-6:n-3 PUFA ratio could regulate lipid and fatty acid metabolism in blood and tissue. Reducing dietary n-6:n-3 PUFA ratio (3:1) could appropriately suppress expression of related genes in PPARγ signaling, and result in improved growth performance and n-3 PUFA deposition in muscle and adipose tissue in finishing pigs.

Molecular Characterization of Hanwoo Glucose Transporter 4 Gene (한우 Glucose Transporter 4 유전자의 분자생물학적 해석)

  • Lee, S.M.;Jeong, Y.H.;Kim, H.M.;Park, H.Y.;Yoon, D.H.;Moon, S.J.;Chung, E.R.;Kang, M.J.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.1087-1094
    • /
    • 2005
  • The uptake of glucose for metabolism and growth is essential to most animal cells and is mediated by glucose transport protein. In the glucose transport protein family, GLUT4 plays a key role in cellular glucose uptake stimulated by insulin in skeletal muscles and adipose tissue in rodents and human. In this studies, we reported the identification, characterization, and expression of Hanwoo GLUT4 gene. The Hanwoo GLUT4 cDNA includes a 1527 bp open reading frame encoding a protein of 509 amino acids. The GLUT4 amino acid sequences of the Hanwoo show strong conservation with the corresponding sequences reported in other species. The highest mRNA expression of GLUT4 was detected in heart and lower expression was detected in rib meat, sirloin, and colon. We confirmed the expression of GLUT4 in the subcutaneous and small intestinal adipose tissue using RT-PCR. To investigate the expression of GLUT4 in the bovine intramuscular adipose differentiation, fibroblast-like cells were isolated from the sirloin of Hanwoo bull aged 12 months by collagenase digestion of minced tissue and cultured with activators of PPAR gamma. We identified that GLUT4 mRNA expression decreased during differentiation of preadipocytes into adipocyte in Korean cattle. These results indicated that function of GLUT4 in bovine adipose tissue was different from that of mouse and human.

Effects of Genetic Polymorphisms of ADD1 Gene on Economic Traits in Hanwoo and Jeju Black Cattle-derived Commercial Populations in Jeju-do (제주도 한우와 제주흑우실용화축군 집단에서 ADD1 유전자의 다형성이 경제형질에 미치는 영향)

  • Han, Sang-Hyun;Oh, Hong-Shik;Lee, Jae-Bong;Jwa, Eun-Sook;Kang, Yong-Jun;Kim, Sang-Geum;Yang, Sung-Nyun;Kim, Yoo-Kyung;Cho, In-Cheol;Cho, Won-Mo;Ko, Moon-Suck;Baek, Kwang-Soo
    • Journal of Life Science
    • /
    • v.25 no.1
    • /
    • pp.21-28
    • /
    • 2015
  • Genetic polymorphisms of adipocyte determination and differentiation factor 1 (ADD1) gene were screened in Hanwoo and Jeju Black cattle-derived commercial (JBC-DC) populations. The ADD1 genotypes were determined using the presence/absence of 84-bp fragment at intron 7 region. The association of ADD1 genotypes for economic traits was examined in both populations. In the Hanwoo steers, ADD1 D/- carcasses showed significantly thicker backfat levels than those from WW (p<0.05). However, the thickest level of backfat appeared in WD heterozygotes, whereas thicker backfat did not appear in DD homozygotes in the JBC-DC population (p<0.05), leading to the supposition that synergic effects of alleles W and D increase backfat deposition. On the other hand, there was no association between the ADD1 genotypes and intramuscular fat deposition measured as meat quality index and marbling score. From these results, we concluded that the bovine ADD1 affected the backfat in subcutaneous tissue, rather than intramuscular fat in muscle tissue. In addition, the DD animals showed higher levels of meat color than those from W/- (p<0.05). Interestingly, a highly significant difference was found between the genotypes and carcass weights only in the JBC-DC population, and D/- animals were heavier by more than 38 kg than those from WW (p<0.001). The results of this study reveal faster growth rate and differences in steer productivity according to genotypes of the ADD1 gene. These findings demonstrate that ADD1 genotypes may effectively function as molecular genetic markers for the improvement of Hanwoo and Jeju Black cattle-related crossbreeding systems.

Effects of Polyclonal Antibody Candidate to Adipocytes for Reducing Body Fat on Body Weight, Fecal Digestibility and Blood Metabolites in Pigs (체지방 감소 다클론 후보 항체가 비거세돈의 체중, 분 소화율 및 혈액 대사물질에 미치는 영향)

  • Choi, Chang-Weon;Baek, Kyung-Hoon;Cho, Sung-Back;Oh, Young-Kyoon;Hong, Seong-Koo;Choi, Chang-Bon
    • Journal of Animal Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.375-382
    • /
    • 2010
  • Twelve pigs were used to investigate the effects of polyclonal antibody candidate against abdominal (AAb) and subcutaneous adipocyte membrane proteins (SAb) on body weight, fecaldigestibility and blood metabolites. When AAb and SAb developed by Choi et al. (2010) were injected to pigs, the numerical increase in BW (body weight) occurred at 4 weeks post-treatment, but BW for an entire period was also increased, indicating that the BW increase may not be affected by the antibodies injection. Antibodies treatment did not affect (P>0.05) fecal digestibility of dry matter, crude protein, crude fat and crude fiber. Fecal digestibility of crude ash for control (no treatment) at 2 weeks decreased, and that for non-immunized serum treatmentgroup at 4 weeks post-treatment increased, respectively (P<0.05). However, fecal digestibility of crude ash for AAb and SAb groups did not significantly change. At 4 weeks after the antibodies treatment, blood urea N concentration for AAb and SAb groups was significantly increased (P<0.05). However, these increases may not be caused by the antibodies treatment because similar pattern in blood urea N concentration occurred before the antibodies treatment. Antibodies treatment did not affect concentration of plasma glucose and triglycerides (P<0.05). Compared with control, concentration of plasma total cholesterol for AAb and SAb groups at 4 weeks post-treatment was significantly (P<0.05) decreased. This may suggest that body fat reduction possibly occurs. In conclusion, the AAb and the SAb developed by Choi et al. (2010) may have safety in nutritional physiological metabolism in pigs. Further study on in vivo fat reduction of the antibodies against abdominal and subcutaneous adipocytes of pigs should be required for fat-reduced pork production.