• 제목/요약/키워드: subcritical

검색결과 243건 처리시간 0.03초

Subcritical Water Extraction에 의한 PCBs 추출 (Extraction of PCBs by Subcritical Water Extraction)

  • 곽동환;문지용;이성인;정기호
    • 분석과학
    • /
    • 제13권4호
    • /
    • pp.511-519
    • /
    • 2000
  • 물은 초임계 상태($T{\geq}374^{\circ}C$, $p{\geq}221$ atm)에서 비극성 유기오염물질에 대해 좋은 용매로 작용 하지만 부식성이 강하게 나타난다. Subcritical water extraction (이하 SWE)은 토양이나 저니토에 흡착되어 있는 비극성 유기오염물을 신속하고 효율적으로 추출할 수 있다. Subcritical 조건 하에 있는 물은 다양한 비극성 유기물들을 추출할 수 있다. SWE를 이용하면 토양이나 저니토로부터 수 분 이내에 PCBs를 완전히 제거할 수 있으며, 50 atm, $260^{\circ}C$의 subcritical 상태에 있는 물을 추출에 이용한다.

  • PDF

강 용접 열영향부 취화역 의 열변형취화 에 관한 연구 (A Study on Hot Straining Embrittlement of Subcritical HAZ in Steel Weldments)

  • 정세희;김태영;임재규
    • Journal of Welding and Joining
    • /
    • 제3권2호
    • /
    • pp.35-41
    • /
    • 1985
  • The fracture toughness of subcritical HAZ in the hot strained weldments of two structural steels(SB 41 and SA 537) has been investigated by COD test method and metallurgical study. The obtained results are summarized as follows; 1. The hot straining embitterment of subcritical HAZ depends on the hot straining amounts of notch tip, and the transition temperature( $T_{tr}$ ) increases with the accumulated hot straining amounts(.SIGMA. vertical bar .delta.$_{t}$vertical bar). 2. The fracture toughness of subcritical HAZ depends on materials and microstructure. The transition temperature( $T_{tr}$ ) of subcritical HAZ in SB 41 is almost same as that of parent material, however in SA 537 the temperature is higher than that of parent and lower than that of transformed HAZ. 3. The subcritical HAZ in SA 537 shows a higher toughness at small amounts of hot straining (.SIGMA. vertical bar .delta. $_{t}$vertical bar<0.3mm).mm).

  • PDF

Numerical Simulations of Subcritical Reactor Kinetics in Thermal Hydraulic Transient Phases

  • J. Yoo;Park, W. S.
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.149-154
    • /
    • 1998
  • A subcritical reactor driven by a linear proton accelerator has been considered as a nuclear waste incinerator at Korea Atomic Energy Research Institute(KAERI). Since the multiplication factor of a subcritical reactor is less than unity, to compensate exponentially decreasing fission neutrons from spallation reactions are essentially required for operating the reactor in its steady state. furthermore, the profile of accelerator beam currents is very important in controlling a subcritical reactor, because the reactor power varies in accordance of the profile of external neutrons. We have developed a code system to find numerical solutions of reactor kinetics equations, which are the simplest dynamic model for controlling reactors. In a due course of our previous numerical study of point kinetics equations for critical reactors, however, we learned that the same code system can be used in studying dynamic behavior of the subcritical reactor. Our major motivation of this paper is to investigate responses of subcritical reactors for small changes in thermal hydraulic parameters. Building a thermal hydraulic model for the subcritical reactor dynamics, we performed numerical simulations for dynamic responses of the reactor based on point kinetics equations with a source term. Linearizing a set of coupled differential equations for reactor responses, we focus our research interest on dynamic responses of the reactor to variations of the thermal hydraulic parameters in transient phases.

  • PDF

In vitro cytotoxic activity of ginseng leaf/stem extracts obtained by subcritical water extraction

  • Lee, Kyoung Ah;Kim, Kee-Tae;Chang, Pahn-Shik;Paik, Hyun-Dong
    • Journal of Ginseng Research
    • /
    • 제38권4호
    • /
    • pp.289-292
    • /
    • 2014
  • Ginseng leaf/stem extract produced by subcritical water extraction at high temperature ($190^{\circ}C$) posses higher cytotoxic activity against human cancer cell lines than ethanol extract. Subcritical water extraction can be a great candidate for extraction of functional substance from ginseng leaves/stems.

Extraction of Reducing Sugar with Anti-Oxidative Scavengers from Peels of Carya cathayensis Sarg.: Use of Subcritical Water

  • Shimanouchi, Toshinori;Ueno, Shohei;Yang, Wei;Kimura, Yukitaka
    • Environmental Engineering Research
    • /
    • 제19권1호
    • /
    • pp.41-45
    • /
    • 2014
  • The peels of Carya cathayensis Sarg. (PCCS) were treated under subcritical water conditions ($130^{\circ}C$ to $280^{\circ}C$ for 0 to 120 min). The extract from PCCS included reducing sugar, proteins, and compounds with radical scavenging activity. Addressing the reducing sugar that is a resource of bioethanol, we could maximize the reducing sugar under the subcritical water ($190^{\circ}C$ for 60 min) and obtain 0.24 g/g-sample together with 9.7 units/mg-sample of radical scavenging activity. The obtained extract was estimated to correspond to 1 L of bioethanol/100 g-sample. It was therefore considered that the treatment by subcritical water could yield reducing sugar and natural compounds with radical scavenging activity.

절리면의 응력확대계수가 파괴인성보다 작은 암반사면의 진행성 파괴 (Progressive Failure of a Rock Slope by the Subcritical Crack Growth of Asperities Along Joints)

  • 김치환
    • 터널과지하공간
    • /
    • 제19권2호
    • /
    • pp.95-106
    • /
    • 2009
  • 암석파괴역학과 파괴인성 이하의 응력상태에서 균열이 발생하고 성장하는 특성을 고려하여 암반사면의 진행성 파괴를 검토하였다. 굴착이 종료된 암반사면은 응력이 거의 변하지 않은 조건이지만, 시간이 경과함에 따라 절리면 내 미소한 접점에서 파괴가 발생하고 파괴된 접점의 수효가 증가함에 따라 절리면이 파괴되고, 파괴된 절리면이 많아져 사면이 파괴되는 진행성파괴 현상을 수치해석적으로 확인하였다. 따라서 암반사면의 진행성 파괴는 파괴인성보다 낮은 응력상태에 있는 암반 절리면 내 미소한 접점에서 시간의 경과에 따라 발생한 균열이 성장하여 사면을 파괴시키는 것으로 분석되었다.

Computational design and characterization of a subcritical reactor assembly with TRIGA fuel

  • Asuncion-Astronomo, Alvie;Stancar, Ziga;Goricanec, Tanja;Snoj, Luka
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.337-344
    • /
    • 2019
  • The TRIGA fuel of the Philippine Research Reactor-1 (PRR-1) will be used in a subcritical reactor assembly (SRA) to strengthen and advance nuclear science and engineering expertise in the Philippines. SRA offers a versatile and safe training and research facility since it can produce neutrons through nuclear fission reaction without achieving criticality. In this work, we used a geometrically detailed model of the PRR-1 TRIGA fuel to design a subcritical reactor assembly and calculate physical parameters of different fuel configurations. Based on extensive neutron transport simulations an SRA configuration is proposed, comprising 44 TRIGA fuel rods arranged in a $7{\times}7$ square lattice. This configuration is found to have a maximum $k_{eff}$ value of $0.95001{\pm}0.00009$ at 4 cm pitch. The SRA is characterized by calculating the 3-dimensional neutron flux distribution and neutron spectrum. The effective delayed neutron fraction and mean neutron generation time of the system are calculated to be $748pcm{\pm}7pcm$ and $41{\mu}s$, respectively. Results obtained from this work will be the basis of the core design for the subcritical reactor facility that will be established in the Philippines.

MULTIPLICITY RESULT OF THE SOLUTIONS FOR A CLASS OF THE ELLIPTIC SYSTEMS WITH SUBCRITICAL SOBOLEV EXPONENTS

  • JUNG, TACKSUN;CHOI, Q-HEUNG
    • Korean Journal of Mathematics
    • /
    • 제23권4호
    • /
    • pp.619-630
    • /
    • 2015
  • This paper is devoted to investigate the multiple solutions for a class of the cooperative elliptic system involving subcritical Sobolev exponents on the bounded domain with smooth boundary. We first show the uniqueness and the negativity of the solution for the linear system of the problem via the direct calculation. We next use the variational method and the mountain pass theorem in the critical point theory.

Stability Analysis of an Accelerator-Driven Fluid-Fueled Subcritical Reactor System

  • Kim, Do-Sam;Cho, Nam-Zin
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.90-95
    • /
    • 1997
  • In this work, linear dynamics of a circulating fluid-fueled subcritical reactor system with temperature feedback and external neutron source was modeled and examined. In a circulating fluid-fuel system, the stable region is slightly moved by a circulation fluid effect. The effects of subcriticality and temperature feedback coefficient on the reactor stability were tested by calculating frequency response of neutron density originated from reactivity perturbation or external source oscillation of system. The amplitude transfer function has a different shape near subcritical region due to the exponential term in the transfer function. The results of the study show that at a slightly subcritical region, low frequency oscillation in accelerator current or reactivity can be amplified depending on the temperature feedback. However, as the subcriticality increases, the oscillation becomes negligible regardless of the magnitude of the temperature feedback coefficient.

  • PDF

배치형과 연속흐름형에 의한 토양 중 RDX의 아임계 분해특성 비교연구 (Study on Subcritical Water Degradation of RDX Contaminated Soil in Batch and Dynamic Mode)

  • 최재헌;이환;이철효;김주엽;박정훈;조영태
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권6호
    • /
    • pp.95-102
    • /
    • 2015
  • The purpose of this study is to compare the degradation characteristics by subcritical water of RDX contaminated soil using batch mode and dynamic mode devices. First, upon application of RDX contaminated soil, RDX treatment efficiency was increased with increasing the temperature in both modes. At 150℃, the treatment efficiency was 99.9%. RDX degradation efficiency got higher with lower ratio of solid to liquid. However, the treatment efficiency in the dynamic mode tended to be decreased at a certain ratio of solid to liquid or lower. The treatment efficiency was increased when it took longer time for the reactions in both modes. As the results of analysis on concentration of treated water after subcritical water degradation, the RDX recovery rate of dynamic and batch modes at 150℃ was 10.5% and 1.5%, respectively. However, both modes showed very similar recovery rates at 175℃ or higher. RDX degradation products were analyzed in treated water after it was treated with subcritical water. According to the results, RDX degradation mechanism was mostly oxidation reaction and reduction reaction was partially involved. Therefore, it suggested that most of RDX in soil was degraded by oxidation of subcritical water upon extraction. According to this result, it was found that both batch and dynamic modes were very effectively applied in the treatment of explosive contaminated soil.