• Title/Summary/Keyword: sub-grain

Search Result 939, Processing Time 0.026 seconds

Effect of grain size of Pb(La,Ti)O$_3$thin films grown by pulsed laser deposition for memory device application (메모리 소자 응용을 위한 펄스 레이저 증착법으로 제작된 PLT박막의 열처리 효과 연구)

  • 허창회;심경석;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.861-864
    • /
    • 2000
  • Ferroelectric thin film capacitors with high dielectric constant are important for the application of memory devices. In this work, thin films of PLT(28)(Pb$\sub$0.72/La$\sub$0.28/Ti$\sub$0.93/O$_3$) were fabricated on Pt/Ti/SiO$_2$/Si substrates in-situ annealing and ex-situ annealing have been compared depending on the annealing time. We have systematically investigated the variation of grain sizes depending on the condition of post-annealing and the variation of deposition rate. C-V measurement, ferroelectric properties, leakage current and SEM were performed to investigate the electrical properties and the microstructural properties of Pb(La,Ti)O$_3$.

  • PDF

Enhancement of Density and Piezoelectric Properties of 0.96(K0.456Na0.536)Nb0.95Sb0.05-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 Lead-Free Piezoelectric Ceramics through Two-Step Sintering Method (Two-Step 소결법을 통한 0.96(K0.456Na0.536)Nb0.95Sb0.05-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 무연 압전 세라믹의 밀도 및 압전 특성 향상)

  • Il-Ryeol Yoo;Sang-Hyun Park;Seong-Hui Choi;Kyung-Hoon Cho
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.116-124
    • /
    • 2024
  • In this study, we investigated the microstructure and piezoelectric properties of 0.96(K0.456Na0.536)Nb0.95Sb0.05-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 (KNNS-BNKZ) ceramics based on one-step and two-step sintering processes. One-step sintering led to significant abnormal grain (AG) growth at temperatures above 1,085 ℃. With increasing sintering temperature, piezoelectric and dielectric properties were enhanced, resulting in a high d33 = 506 pC/N for one-step specimen sintered at 1,100 ℃ (one-step 1,100 ℃ specimen). However, for one-step 1,115 ℃ specimen, a slight decrease in d33 was observed, emphasizing the importance of a high tetragonal (T) phase fraction for superior piezoelectric properties. Achieving a relative density above 84 % for samples sintered by the one-step sintering process was challenging. Conversely, two-step sintering significantly improved the relative density of KNNS-BNKZ ceramics up to 96 %, attributed to the control of AG nucleation in the first step and grain growth rate control in the second step. The quantity of AG nucleation was affected by the duration of the first step, determining the final microstructure. Despite having a lower T phase fraction than that of the one-step 1,100 ℃ specimen, the two-step specimen exhibited higher piezoelectric coefficients (d33 = 574 pC/N and kp = 0.5) than those of the one-step 1,100 ℃ specimen due to its higher relative density. Performance evaluation of magnetoelectric composite devices composed of one-step and two-step specimens showed that despite having a higher g33, the magnetoelectric composite with the one-step 1,100 ℃ specimen exhibited the lowest magnetoelectric voltage coefficient, due to its lowest kp. This study highlights the essential role of phase fraction and relative density in enhancing the performance of piezoelectric materials and devices, showcasing the effectiveness of the two-step sintering process for controlling the microstructure of ceramic materials containing volatile elements.

Highly Donor-doped LaxBa1-xTiO3 Ceramics

  • Korobova Nataly;Soh Dea-Wha
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.4
    • /
    • pp.18-21
    • /
    • 2003
  • Sol-gel processing of $BaTiO_3$ ceramics doped with La(0.01-1.00 at. $\%$) were prepared from metal barium, titanium n-butoxide and lanthanum iso-propoxide. Characterization of the sol-gel-derived powder using XRD, SEM is also reported. The obtained results showed that insulator to semiconductor transition for highly donor-doped barium titanate was closely related to the incorporation of donor into the grains and to the resultant grain size, which were significantly affected by the sinterability of $BaTiO_3$ powders and sintering conditions used.

Preparation and Properties of the Intra-type Al2O3Ag Nanocomposites (입내 분산형 Al2O3/Ag 나노복합체의 제조와 특성)

  • Cheon, Sung-Ho;Han, In-Sub;Awaji, Hideo
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.4 s.299
    • /
    • pp.208-213
    • /
    • 2007
  • Alumina/silver ($Al_2O_3/Ag$) nanocomposites with Ag content up to 9 vol% were prepared from nanopowder by soaking method using ${\gamma}-Al_2O_3$ of needle type and spark plasma sintering (SPS). The mechanical properties of specimens were investigated three-point flexural strength and toughness as a function of the Ag contents. The maximum flexural strength of the alumina/silver nanocomposite was 850 MPa for the 1 vol% composite, and also higher than monolith alumina as about 800 MPa at 3, 5, and 7 vol% Ag contents. Fracture toughness by single edged V-notch beam (SEVNB) was $4.05MPa{\cdot}m^{1/2}$ for the 3 vol% composite and maintained about $4.00MPa{\cdot}m^{1/2}$ at 5, and 7 vol% Ag content. Microstructure of fracture surface for each fracture specimens was observed. Due to the inhibition effect of alumina grain growth, the average grain size of nanocomposites depends on the content of Ag nano particles. The fracture morphology of nanocomposite with dislocation (sub-grain boundary) by silver nano-particles of second phases in the alumina matrix also showed transgranular fracture-mode compare with intergranular of monolith alumina. Thermal conductivity of specimens at room temperature was about 40 W/mK for the 1 vol% Ag content.

Effect of Abnormal Grain Growth and Heat Treatment on Electrical Properties of Semiconducting BaTiO3Ceramics

  • Lee, Joon-Hyung;Cho, Sang-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.1
    • /
    • pp.21-25
    • /
    • 2002
  • Effect of abnormal grain growth and heat treatment time on the electrical properties of donor-doped semiconductive BaTiO$_3$ceramics was examined. La-doped BaTiO$_3$ceramics was sintered at 134$0^{\circ}C$ for different times from 10 to 600 min in order to change the volume fraction of the abnormal grains in samples. As a result, samples with different volume fraction of abnormal grain growth from 22 to 100% were prepared. The samples were annealed at 120$0^{\circ}C$ for various times. The resistivity of the sam-ples at room and above Curie temperature was examined. The complex impedance measurement as functions of the volume fraction of abnormal grains and annealing time was conducted. Separation of complex impedance semicircle was observed in a sample in which abnormal and fine grains coexist. The results are discussed from a viewpoint of microstructure-property relationship.

Effect of Ti Addition on the Microstructure and Grain Coarsening of SCR420H Steel (SCR420H강의 미세조직과 결정립 조대화에 미치는 Ti 첨가 영향)

  • Jeonghu Choi;Sungjin Kim;Minhee Kim;Jaehyun Park;Jaehyeok Sin;Minhwan Ryu;Woochul Shin;Minwook Kim;Seok-Jae Lee;Jae-Gil Jung
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.4
    • /
    • pp.163-171
    • /
    • 2024
  • SCR420H steel is a low-carbon chromium alloy steel designed for carburizing heat treatment. Recently, research is being conducted on high-temperature carburization heat treatment to reduce costs and CO2 emissions by shortening the carburization time to meet the international carbon neutral policy. However, this high-temperature carburization heat treatment coarsens the steel grains and causes a decrease in mechanical properties. In this study, a large amount of Ti was added to increase the grain refinement effect in the high-temperature carburizing process. We investigated the microstructure and precipitates of SCR420H steel without Ti (Al steel) and with Ti (AlTi steel). Thermodynamic calculations showed that the AlN and (Ti,Nb)(C,N) precipitated in Al steel, while (Ti,Nb)(C,N) and Ti4C2S2 precipitated in AlTi steel. Addition of Ti increases the fraction of bainite after reheating process. Transmission electron microscopy analysis shows that small amounts of AlN and (Ti,Nb)(C,N) precipitates are formed in the Al steel. The addition of Ti increases the density of (Ti,Nb)(C,N) precipitates and induces the formation of Ti4C2S2 precipitates, increasing the grain coarsening temperature (GCT) under all heat treatment conditions. Higher reheating temperatures also resulted in higher GCT values due to increased precipitation.

Program Development for Material Degradation Evaluation Using Grain Boundary Etching Method (입계부식법을 이용한 열화도 평가 프로그램 개발)

  • Yu, Hyo-Seon;Baek, Seung-Se;Na, Seong-Hun;Kim, Jeong-Gi;Lee, Hae-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1064-1072
    • /
    • 2001
  • It is very important to evaluate material degradation like temper and carbide embrittlements to secure the reliable and efficient operational conditions and to prevent brittle failure in service. The extent of material deterioration can be accurately evaluated by mechanical test such as impact test or creep test. But it is almost impossible to sample a large specimen from in-service plants. Thus, the material degradation evaluation by a non-destructive method is earnestly required. Recently the non-destructive test technique which uses the grain boundary etching characteristics owing to the variation of material structures has been proposed. However the program for material degradation evaluation using the grain boundary etching method(GEM) in Windows 98 domain doesnt be developed now. The aims of this paper are to develop the program and to complete the new master curve equations for the evaluation of material degradation on in-serviced high temperature components.

Fabrication and Electrical Propertie of the Ferroelectric (K0.5Na0.5)NbO3 (강유전체(K0.5Na0.5)NbO3의 제조 및 전기적 특성 분석)

  • Hyun, June Won;Byun, Jaeduk
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.4
    • /
    • pp.277-281
    • /
    • 2017
  • Ferroelectric ceramics are broadly used for various industrial applications. In this research, the lead-free ferroelectric ceramics of $(K_{0.5}Na_{0.5})NbO_3$ was fabricated by using the solid state synthesis. The $(K_{0.5}Na_{0.5})NbO_3$ pellets were sintered at 1200, 1150 and $1100^{\circ}C$ for 4 hours in air atmosphere. Field-emission scanning electron microscopy (FE-SEM) characterization of the sintered KNN ceramics revealed surface morphology and grain size. And we used the X-ray diffraction (XRD) for measuring the sample crystal phase. Temperature dependence of the dielectric constant was measured by using an LCR meter. The sintered at $1150^{\circ}C$ for 4 hours sample has a highest dielectric constant 6011 at Curie temperature ($T_C$) and dense structure with $2.33{\mu}m$ grain size.

Microstructure and Mechanical Properties of Very-high-speed Extruded Mg-Bi-Al-Mn Alloy (Mg-Bi-Al-Mn 초고속 마그네슘 압출재의 미세조직 및 기계적 특성)

  • Cha, J.W.;Jin, S.C.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.73-80
    • /
    • 2022
  • In this study, a developed Mg-5Bi-2Al-0.4Mn (BAM520, wt%) alloy was successfully extruded at an extremely high speed of 70 m/min. Microstructural evolution during extrusion and the microstructural characteristics and tensile properties of the very-high-speed extruded BAM520 alloy were then investigated. The homogenized BAM520 billet contained only thermally stable Mg3Bi2 phase particles without any Mg17Al12 phase with a low melting temperature. Therefore, the BAM520 alloy exhibited excellent extrudability. The very-high-speed extruded BAM520 alloy had a completely recrystallized grain structure and a typical basal fiber texture. Despite the extremely high extrusion speed of 70 m/min, the extruded BAM520 alloy had a high ultimate tensile strength of 280 MPa due to combined strengthening effects of a small grain size, numerous fine Mg3Bi2 particles, and strong basal texture.

Fabrication and Densification of a Nanocrystalline CoSi Compound by Mechanical Alloying and Spark Plasma Sintering

  • Chung-Hyo Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.3
    • /
    • pp.101-105
    • /
    • 2023
  • A mixture of elemental Co50Si50 powders was subjected to mechanical alloying (MA) at room temperature to prepare a CoSi thermoelectric compound. Consolidation of the Co50Si50 mechanically alloyed powders was performed in a spark plasma sintering (SPS) machine using graphite dies up to 800 ℃ and 1,000 ℃ under 50 MPa. We have revealed that a nanocrystalline CoSi thermoelectric compound can be produced from a mixture of elemental Co50Si50 powders by mechanical alloying after 20 hours. The average grain size estimated from a Hall plot of the CoSi intermetallic compound prepared after 40 hours of MA was 65 nm. The degree of shrinkage of the consolidated samples during SPS became significant at about 450 ℃. All of the compact bodies had a high relative density of more than 94 % with a metallic glare on the surface. X-ray diffraction data showed that the SPS compact produced by sintering mechanically alloyed powders for 40-hours up to 800 ℃ consisted of only nanocrystalline CoSi with a grain size of 110 nm.