Browse > Article
http://dx.doi.org/10.5695/JKISE.2017.50.4.277

Fabrication and Electrical Propertie of the Ferroelectric (K0.5Na0.5)NbO3  

Hyun, June Won (Department of Physics, Dankook University)
Byun, Jaeduk (Department of Physics, Dankook University)
Publication Information
Journal of the Korean institute of surface engineering / v.50, no.4, 2017 , pp. 277-281 More about this Journal
Abstract
Ferroelectric ceramics are broadly used for various industrial applications. In this research, the lead-free ferroelectric ceramics of $(K_{0.5}Na_{0.5})NbO_3$ was fabricated by using the solid state synthesis. The $(K_{0.5}Na_{0.5})NbO_3$ pellets were sintered at 1200, 1150 and $1100^{\circ}C$ for 4 hours in air atmosphere. Field-emission scanning electron microscopy (FE-SEM) characterization of the sintered KNN ceramics revealed surface morphology and grain size. And we used the X-ray diffraction (XRD) for measuring the sample crystal phase. Temperature dependence of the dielectric constant was measured by using an LCR meter. The sintered at $1150^{\circ}C$ for 4 hours sample has a highest dielectric constant 6011 at Curie temperature ($T_C$) and dense structure with $2.33{\mu}m$ grain size.
Keywords
KNN; Ferroelectric; Ceramic; Dielectric constant; Perovskite;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Michihito Ueda, Yukihiro Kaneko, Yu Nishitani, Atsushi Omote, Battery-less shock-recording device consisting of a piezoelectric sensor and a ferroelectric-gate field-effect transistor, Sensors and Actuators A, 232 (2015) 75-83.   DOI
2 Terence Mittmann, Franz P.G. Fengler, Claudia Richter, Min Hyuk Park,Thomas Mikolajick, Uwe Schroeder, Optimizing process conditions for improved $Hf_{1-x}Zr_xO_2$ ferroelectric capacitor performance, Microelectronic Engineering, 178 (2017) 48-51.   DOI
3 Preeti Sharma, Parveen Kumar, R.S. Kundu, N. Ahlawat, R. Punia, Enhancement in magnetic, piezoelectric and ferroelectric properties on substitution of titanium by iron in barium calcium titanate ceramics, Ceramics International, Vol. 42, Issue 10 (2016) 12167-12171.   DOI
4 V.V. Sidsky, A.V. Semchenko, A.G. Rybakov, V.V. Kolos, A.S. Turtsevich, A.N. Asadchyi, W. Strek3, $La^{3+}$-doped $SrBi_2Ta_2O_9$ thin films for FRAM synthesized by sol-gel method, JOURNAL OF RARE EARTHS, Vol. 32, No. 3 (2014) 277-281.   DOI
5 Wei Lin Tan, Dennis M. Kochmann, An effective constitutive model for polycrystalline ferroelectric ceramics: Theoretical framework and numerical examples, Computational Materials Science, 136 (2017) 223-237.   DOI
6 R. Castaneda-Guzman, R. Lopez-Juarez, J.J. Gervacio, M.P. Cruz, S. Diaz de la Torre, S.J. Perez-Ruiz, Structural and piezo-ferroelectric properties of $K_{0.5}Na_{0.5}NbO_3$ thin films grown by pulsed laser deposition and tested as sensors, Thin Solid Films 636 (2017) 458-463.   DOI
7 Gui-gui Peng, De-yi Zheng, Cheng Cheng, Jing Zhang, Hao Zhang, Effect of rare-earth addition on morphotropic phase boundary and relaxation behavior of the PNN-PZT ceramics, Journal of Alloys and Compounds 693 (2017) 1250-1256.   DOI
8 L.B. Kong, T.S. Zhang, J. Ma, F. Boey, Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique, Progress in Materials Science 53 (2008) 207-322.   DOI
9 Enwei Sun a, Wenwu Cao, Relaxor-based ferroelectric single crystals: Growth, domain engineering, characterization and applications, Progress in Materials Science 65 (2014) 124-210.   DOI
10 Shujun Zhang a, Fei Li, Xiaoning Jiang, Jinwook Kim, Jun Luo, Xuecang Geng, Advantages and challenges of relaxor-$PbTiO3_$ ferroelectric crystals for electroacoustic transducers - A review, Progress in Materials Science 68 (2015) 1-66.   DOI
11 T. Takenaka and H. Nagata, Current status and prospects of lead-free piezoelectric ceramics, J. Eur. Ceram. Soc., 25 (2005) 2693.   DOI
12 L. Egerton and D.M. Dillon, Piezoelectric and Dielectric Properties of Ceramics in the System Potassium-Sodium Niobate, J. Am. Ceram. Soc., 42 (1959) 438.   DOI
13 N. M. Hagh, B. Jadidian and A. Safari, Propertyprocessing relationship in lead-free (K, Na, Li)$NbO_3$-solid solution system, J. Electroceram., 18 (2007) 339.   DOI
14 Y. Guo, K. Kakimoto and H. Ohsato, $(Na_{0.5}K_{0.5})NbO_3$-$LiTaO_3$ lead-free piezoelectric ceramics, Materials Letters., 59 (2005) 241.   DOI
15 S. Zhang, R. Xia, T. R. Shrout, ead-free piezoelectric ceramics vs. PZT?, J. Electroceram., 19 (2007) 251.   DOI
16 Y. Guo, K. Kakimoto and H. Ohsato, Appl, Phase transitional behavior and piezoelectric properties of $(Na_{0.5}K_{0.5})NbO_3$-$LiNbO_3$ ceramics, Phys. Lett., 85 (2004) 4121.   DOI
17 Kumar, M. Pattanaik, Sonia. Synthesis and characterizations of KNN ferroelectric ceramics, Ceramics International., 39 (2013) 65.   DOI
18 Beom-Seok Yang, Chang Yun Shin, Chang Whan Won, Effects of Sr on the Electrical Properties of PZT Ceramics Prepared by Self-propagating Hightemperature Synthesis, Journal of the Korean Ceramic Society Vol. 45, No. 11 (2008) 713.   DOI
19 P. Kumara,n, M. Pattanaika, Soniab, Synthesis and characterizations of KNN ferroelectric ceramicsnear 50/50 MPB, Ceramics International 39 (2013) 65.   DOI
20 Roopam Gaur, K. Chandramani Singh, Radhapiyari Laishram, Effect of Sintering Parameters on the Electrical and the Piezoelectric Properties of Double-calcined $(K_{0.48}Na_{0.48}Li_{0.04})(Nb_{0.96}Sb_{0.04})O_3$ Nanopowders, Journal of the Korean Physical Society, Vol. 66, No. 5 (2015) 800.   DOI