• Title/Summary/Keyword: sub-cooled nitrogen

Search Result 42, Processing Time 0.018 seconds

Design of a IMVA Single-Phase HTS Power Transformer

  • Kim, Sung-Hoon;Kim, Woo-Seok;Park, Chan-Bae;Hahn, Song-yop;Park, Kyeong-Dal;Joo, Hyeong-Gil;Hong, Gye-Won
    • Progress in Superconductivity
    • /
    • v.4 no.1
    • /
    • pp.86-89
    • /
    • 2002
  • In this paper, the design of a IMVA single-phase high temperature superconducting(HTS) power transformer with BSCCO-2223 HTS tapes is presented. The rated voltages of each sides of the transformer are 22.9 ㎸ and 6.6 ㎸, respectively The winding of 1MVA HTS transformer is consisted of double pancake type HTS windings, which have advantages of insulation and distribution of high voltage, and are cooled by subcooled liquid nitrogen of 65K. Four HTS tapes were wound in parallel for the windings of low voltage side and the four parallel conductors are transposed. The design of 1MVA HTS transformer, a shell type core made of laminated silicon steel plate is chosen, and the core is separated with the windings by a cryostat with a room temperature bore. The cryostat made of non-magnetic and non-conducting material and a liquid nitrogen sub-cooling system is designed in order to maintain the coolant's temperature of 65K. For electromagnetic analysis of 1MVA HTS transformer, a finite element method of an axis of symmetry is used. The maximum perpendicular component of magnetic flux density of pancake windings is about 0.15T. And through analyzing the magnetic field distribution, an optimal winding arrangement of 1MVA HTS transformer is obtained.

  • PDF

Development and Test of a Cooling System for a 154 kV Superconducting Fault Current Limiter

  • Kim, Heesun;Han, Young Hee;Yang, Seong-Eun;Yu, Seung-Duck;Park, Byung Jun;Park, Kijun;Yoo, Jaeun;Kim, Hye-Rim;In, Sehwan;Hong, Yong Joo;Yeom, Hankil
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.141-144
    • /
    • 2015
  • The superconducting fault current limiter (SFCL) is an electric power device that limits the fault current immediately in a power grid. Korea Electric Power Corporation (KEPCO) has been developing a 154 kV, 2 kA SFCL since 2011 to protect power grids from increasing fault current and improve the stability and quality of electric power. This SFCL adopts 2G YBCO wires and operates at 71 K and 5 bars. In this paper, a cooling system for the 154 kV SFCL and its cooling test results are reported. This cooling system uses a Stirling-type cooler to make sub-cooled liquid nitrogen ($LN_2$), which cools the superconductor modules of the SFCL. The $LN_2$ is circulated between the cooler and the cryostat that contains superconductor modules. The $LN_2$ also plays the role of a high voltage insulator between the modules and the cryostat, so the pressure was maintained at 5 bars for high insulation performance. After installation in a test site, the cooling characteristics of the system were tested. In this operation test, some important data were measured such as temperature distribution in $LN_2$, pressure change, performance of the heat exchanger, and cooling capacity of the total system. Consequently, the results indicate that the cooling system operates well as designed.