• Title/Summary/Keyword: sub assembly

Search Result 275, Processing Time 0.03 seconds

Assembly Process of FSMP

  • Kim, Jihun;Kim, Young-Soo;Song, Je Heon;Cho, Myung;Park, Won Hyun;Yang, Ho-Soon;Lee, Joohyung;Kim, Ho-Sang;Lee, Chanhee;Lee, Won Gi;Kim, Kyung Il;Lee, Kyoung-Don;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.120.1-120.1
    • /
    • 2014
  • Fast-steering Secondary Mirror prototype (FSMP) of the Giant Magellan Telescope (GMT) has been developed by the consortium consisting of institutes in Korea and the US. In 2014 we are finalizing the FSMP project as combining two sub-systems, the mirror fabricated by Korea Research Institute of Standards and Science (KRISS) and the mirror cell with tip-tilt controlling system developed by Institute for Advanced Engineering (IAE), in the KRISS facility. In the assembly process we will identify potential difficulties or problems for the process, such that this process can be reflected to the further development of the FSM for GMT. In the presentation, we present how the assembly process can be carried out in safety.

  • PDF

A Single-model Single-sided Assembly Line Balancing Problem Using Main-path Clustering Algorithm (단일모델 단측 조립라인 균형문제의 주경로 군집화 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.5
    • /
    • pp.89-98
    • /
    • 2014
  • This paper suggests heuristic algorithm for single-model simple assembly line balancing problem that is a kind of NP-hard problem. This problem primarily can be solved metaheuristic method. This heuristic algorithm set the main-path that has a most number of operations from start to end-product. Then the clustering algorithm can be assigns operations to each workstation within cycle time follow main-path. This algorithm decides minimum number of workstations and can be reduces the cycle time. This algorithm can be better performance then metaheuristic methods.

Combined Effect of Catholyte Gap and Cell Voltage on Syngas Ratio in Continuous CO2/H2O Co-electrolysis

  • Ha, Min Gwan;Na, Youngseung;Park, Hee Young;Kim, Hyoung-Juhn;Song, Juhun;Yoo, Sung Jong;Kim, Yong-Tae;Park, Hyun S.;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.406-414
    • /
    • 2021
  • Electrochemical devices are constructed for continuous syngas (CO + H2) production with controlled selectivity between CO2 and proton reduction reactions. The ratio of CO to H2, or the faradaic efficiency toward CO generation, was mechanically manipulated by adjusting the space volume between the cathode and the polymer gas separator in the device. In particular, the area added between the cathode and the ion-conducting polymer using 0.5 M KHCO3 catholyte regulated the solution acidity and proton reduction kinetics in the flow cell. The faradaic efficiency of CO production was controlled as a function of the distance between the polymer separator and cathode in addition to that manipulated by the electrode potential. Further, the electrochemical CO2 reduction device using Au NPs presented a stable operation for more than 23 h at different H2:CO production levels, demonstrating the functional stability of the flow cell utilizing the mechanical variable as an important operational factor.

Process Performance and Bacterial Community Structure Under Increasing Influent Disturbances in a Membrane-Aerated Biofilm Reactor

  • Tian, Hailong;Yan, Yingchun;Chen, Yuewen;Wu, Xiaolei;Li, Baoan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.373-384
    • /
    • 2016
  • The membrane-aerated biofilm reactor (MABR) is a promising municipal wastewater treatment process. In this study, two cross-flow MABRs were constructed to explore the carbon and nitrogen removal performance and bacterial succession, along with changes of influent loading shock comprising flow velocity, COD, and NH4-N concentrations. Redundancy analysis revealed that the function of high flow velocity was mainly embodied in facilitating contaminants diffusion and biosorption rather than the success of overall bacterial populations (p > 0.05). In contrast, the influent NH4-N concentration contributed most to the variance of reactor efficiency and community structure (p < 0.05). Pyrosequencing results showed that Anaerolineae, and Beta- and Alphaproteobacteria were the dominant groups in biofilms for COD and NH4-N removal. Among the identified genera, Nitrosomonas and Nitrospira were the main nitrifiers, and Hyphomicrobium, Hydrogenophaga, and Rhodobacter were the key denitrifiers. Meanwhile, principal component analysis indicated that bacterial shift in MABR was probably the combination of stochastic and deterministic processes.

Analysis of C5G7-TD benchmark with a multi-group pin homogenized SP3 code SPHINCS

  • Cho, Hyun Ho;Kang, Junsu;Yoon, Joo Il;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1403-1415
    • /
    • 2021
  • The transient capability of a SP3 based pin-wise core analysis code SPHINCS is developed and verified through the analyses of the C5G7-TD benchmark. Spatial discretization is done by the fine mesh finite difference method (FDM) within the framework of the coarse mesh finite difference (CMFD) formulation. Pin size fine meshes are used in the radial fine mesh kernels. The time derivatives of the odd moments in the time-dependent SP3 equations are neglected. The pin homogenized group constants and Super Homogenization (SPH) factors generated from the 2D single assembly calculations at the unrodded and rodded conditions are used in the transient calculations via proper interpolation involving the approximate flux weighting method for the cases that involve control rod movement. The simplifications and approximations introduced in SPHINCS are assessed and verified by solving all the problems of C5G7-TD and then by comparing with the results of the direct whole core calculation code nTRACER. It is demonstrated that SPHINCS yields accurate solutions in the transient behaviors of core power and reactivity.

Development of an Operating Software for a Model Plant using INTERBUSs (INTERBUSs를 이용한 모델 플랜트의 구동 소프트웨어의 개발)

  • Jo, Young-Ho;Jeong, Byung-Ho
    • IE interfaces
    • /
    • v.12 no.4
    • /
    • pp.575-585
    • /
    • 1999
  • This study develops and operating software for a model plant. The model plant consists of an AS/RS system, two machining centers, an assembly line, and supplementary material handling equipments. Devices of each component are connected with the IBS RT24 DIO 16/16-T I/O module. Each I/O module communicates digital signals with the INTERBUS controller board via SUB-D 9 Connector cable. This study is a previous stage for developing an educational CIM software. Petri Nets is used for modelling the storage/retrieval of the AS/RS system, the flow of workpieces and the assembly line for parts. The operating software is coded with Microsoft Visual $C^{++}$ 5.0 and Interbus Library which is a software driver for the controller board. The operating software can be run on a MS Windows 95. Microsoft Access is used for the implementation of databases for BOM, AS/RS, and parts.

  • PDF

PREDICTION AND CONTROL OF ANGULAR DISTORTION IN THICK WELDMENTS

  • Kim, Sang-Il;Kang, Joong-Kyoo;Han, Yong-Sub
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.700-705
    • /
    • 2002
  • The welding distortion of a hull structure in the shipbuilding industry is inevitable at each assembly stage. The geometric inaccuracy caused by the distortion tends to preclude the introduction of automation and mechanization and needs the additional man-hours for the adjusting work at the following assembly stage. To overcome this problem, a distortion control method should be applied. For this purpose, it is necessary to develop an accurate prediction method which can explicitly account for the influence of various factors on the welding distortion. In order to minimize the weld-induced angular distortion in thick weldments, this paper proposes the optimum groove design for various plate thicknesses as the distortion control method. The validity of this method has been substantiated by a number of numerical simulations and experiments.

  • PDF

Improvement of dynamic characteristics of optical pick-up actuator using ferrofluidic damper (자성유체 댐퍼를 이용한 광픽업 액츄에이터의 동특성 개선)

  • 송병륜;신경식;김진기;남도선;성평용;이주형
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.496-503
    • /
    • 2001
  • The suspension of the optical pickup actuator is damped by the presence of silicone rubber damper bond at its termination. In spite of the presence of it, the actuator still exhibits a strong mechanical resonance which affects its settling time and vibrational characteristics. This resonance can cause errors in reading information from the disk, particularly in high speed CD-ROM and DVD-ROM drives. Ferrofluids are stable colloidal suspensions of sub-micron sized magnetic particles in a carrier liquid. In the actuator design, ferrofluid is applied to the surface of the magnets until the quantity is sufficient to maintain intimate contact with the bobbin/carrier assembly. The fluid is retained in the magnetic field and its viscosity provides the desired mechanical damping to the moving assembly, improving the actuators settling time and vibrational characteristics. Access time is also improved, particularly on warped or eccentric discs.

  • PDF

Large-Scale Assembly of Aligned Graphene Nanoribbons with Sub 30-nm Width

  • Kim, Taekyeong
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.6
    • /
    • pp.524-527
    • /
    • 2014
  • We report a simple yet efficient method to assemble large-scale aligned graphene nanoribbons (GNRs) with a width as small as 30 nm. The $V_2O_5$ nanowires (NWs) were aligned on a graphene surface via spraying a solution of the $V_2O_5$ NWs, and the graphene was selectively etched by the reactive ion etching method using the $V_2O_5$ NWs as a shadow mask. This process allowed us to prepare large scale patterns of the aligned GNRs on a $SiO_2$ substrate. The orientation of the aligned and randomly oriented GNRs was compared by the atomic force microscope (AFM) images. We achieved the highly aligned GNRs along the flow direction of the $V_2O_5$ NWs solution. Furthermore, we successfully fabricated a field effect-transistor with the aligned GNRs and measured its electrical properties. Since our method enable to prepare the aligned GNRs over a large area, it should open up new way for the various applications.

Field Emission from Single-Walled Carbon Nanotubes Aligned on a Gold Plate using Self-Assembly Monolayer

  • Lee, Ok-Joo;Jeong, Soo-Hwan;Lee, Kun-Hong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.305-308
    • /
    • 2002
  • Field emission from single-walled carbon nanotubes (SWNTs) aligned on a patterned gold surface is reported. The SWNTs emitters were prepared at room temperature by a self-assembly monolayer technique. SWNTs were cut into sub-micron length by sonication in an acidic solution. Cut SWNTs were attached on the gold surface by the reaction between the thiol groups and the gold surface. The field emission measurement showed that the turn-on field was 4.8 $V/{\mu}m$ at the emission current density of 10 ${\mu}A/cm^2$. The current density was 0.5 $mA/cm^2$ at 6.6 $V/{\mu}m$. This approach provides a novel route for fabricating CNT-based field emission displays.

  • PDF