• Title/Summary/Keyword: styrene latex

Search Result 75, Processing Time 0.03 seconds

Preparation and Application Characteristics of Carboxylated Styrene Butadiene Latex for Latex Modified Concrete (라텍스 개질 콘크리트용 Carboxylated Styrene Butadiene 라텍스의 제조와 적용 특성)

  • Lee, Bong-Kyu;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1076-1081
    • /
    • 2012
  • For the purpose of development of the latex suitable for latex modified concrete, experimental researches on the preparation of carboxylated styrene butadiene latex by the method of the two-step emulsion polymerization and application to concrete were performed. Sodium dodecylbenzene sulfonate and sodium salt of lauryl sulfonate were selected as anionic emulsifiers, and nonylphenoxy poly(ethyleneoxy) ethanols (n=10, 20, 40) as latex stabilizer. Potassium persulfate and sodium bisulfite were used as redox initiator, besides $Na_2HPO_4$ and $K_2CO_3$ as electrolytes. Polymerization recipe of latex suitable for latex modified concrete were suggested from the experimental researches on the effects of anionic emulsifiers and their concentration on the polymerization stability, and the effect of electrolytes concentration on the particle size of latex. Physical properties, such as slump, air contents, compressive and flexural strength, of latex prepared by suggested polymerization recipe were examined. The experimental results showed that latex modified concrete satisfied the quality standards in slump and air contents. Furthermore, it was turned out that the compressive and the flexural strength of latex modified concrete with 28 days curing time showed appreciably improvements.

The Effects of Interfacial Properties of the Styrene/Water on the Styrene Latex Particle Properties using Triton X-100/SDS Surfactant Mixture (폴리스티렌 라텍스 제조에 있어서 Triton X-100/SDS 계면활성제 혼합이 단량체/수용액 간의 계면물성 및 라텍스의 특성에 미치는 영향)

  • Park, A-Reum-Yi;Kim, Young-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.240-248
    • /
    • 2010
  • The blending effects of surfactants on the polystyrene emulsion polymerization were studied. The blending of Triton X-100 and SDS affects to the interfacial properties of the styrene monomer and water phases, and finally, the properties of the polystyrene latex particles. As the blending ratio of SDS/Triton X-100 increases, the interfacial tension and CMC of the blended surfactants were decreased and results in a reducing the size of the latex particles. It was found that the interfacial tension was reduced when the surfactant were blended. By increasing the SDS content, the interfacial tension was reduced, and, at a certain condition, the interfacial tension was reached to an extremely low value to form micro-emulsion and the nano-sized latex particles (80~110 nm).

Preparation and Physical Properties of Poly(Styrene/Acrylate) Core-Shell Latex Particles (Poly(Styrene/Acrylate) Core-Shell 라텍스 입자의 제조와 물성에 관한 연구)

  • Lee, Kyoung-Goo;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.27-32
    • /
    • 2003
  • The core-shell latex particles were prepared by sequential emulsion polymerization of alkyl methacrylate and styrene(ST) by using an water-soluble initiator(APS) after preparing monomer pre-emulsion in the presence of an anionic surfactant(SDBS). In organic/organic core-shell polymerization, the pre-emulsion method, which minimized required quantity of sulfactant, has been used to increase the conversion rate and the stability of core-shell latex particles as well as to reduce the formation of secondary particle that cause problems of soap-free emulsion during shell polymerization. We used several methods to observe the core-shell structure. The core-shell structure was studied by measuring pH change during hydrolysis by NaOH, glass transition temperature($T_g$) by differential scanning calorimeter(DSC), morphology of latex by transmission electron microscope(TEM) and change of particle size and distribution by a particle analyzer.

Preparation and Application Characteristics of Carboxylated Styrene Butadiene Latex for Polymer Cement Mortar (폴리머 시멘트 몰타르 포장재용 Carboxylated Styrene Butadiene 라텍스의 제조와 적용 특성)

  • Lee, Bong-Kyu;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.789-794
    • /
    • 2012
  • For the purpose of development of the latex suitable for polymer cement mortar, experiments on the preparation of carboxylated styrene butadiene latex by the method of the two-step emulsion polymerization were performed. Methyl methacrylate, methacrylic acid and acrylic acid were selected as carboxylic co-monomer, styrene and butadiene as monomer, sodium dodecylbenzene sulfonate and sodium salt of lauryl sulfonate as anionic emulsifiers, and nonylphenoxy poly (ethyleneoxy) ethanol (n=10, 20, 40) as latex stabilizer. Potassium persulfate and sodium bisulfite were also used as redox initiator, and sodium monohydrogen phosphate and potassium carbonate as electrolytes. The effects of categories and concentration of carboxylic co-monomer, molecular weight control agent, crosslinking agent, and styrene/butadiene monomer ratio on the characteristics of latex were investigated. Polymerization recipes for preparation of polymer cement mortar could be proposed. The prepared latexes were tested for the physical properties such as compressive and flexural strength when latexes were mixed with cement mortar. The results showed that the latex could be adapted to polymer cement mortar. Also, it was recognized that the compressive and flexural strength were exhibited 25.4% and 45.3% respectively higher improvement than the quality standards at 28 days curing time.

A study on the Coating Structure and Printability of Coated Paper (I) - Effect of Ionic Monomer on Paper-coating Latex Properties - (도공층 구조 및 도공지의 인쇄적성에 관한 연구 (I) - 이온성 단량체가 도공용 라텍스의 물성에 미치는 영향 -)

  • Lee, Yong-Kyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.75-82
    • /
    • 1997
  • To improve the quality of coated paper, the continuous research to the coating components and development of alternative latices is required. Recently, amphoteric latex is getting a great concern due to their changable properties of surface charge through controlling pH and some methods have been tried to prepare amphoteric latices. This study was carried out to synthesize amphoteric latex using seeding polymerization method with low concentration emulsifier. Styrene was used as a main monomer in addition to acrylonitrile for a hydrophilic comonomer. acrylic acid for a anionic comonomer and N,N-dimethylaminoethyl methacrylate for a cationic comonomer. Particle size and viscosity of latex were greatly affected by addition of acrylic acid and ammonium persulfate as an initiator. Negative charge of latex in alkali condition was changed to zero to positive charge in around pH 4.

  • PDF

Study for Reducement of Polymerization Time and Improvement of Stability in Manufacturing Carboxylated Styrene-butadiene Latex (카르복실화 스티렌-부타디엔 라텍스의 중합시간 단축과 안정성 개선을 위한 연구)

  • Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • v.37 no.1
    • /
    • pp.31-38
    • /
    • 2002
  • Polymerization of carboxylated styrene-butadiene latex takes longer time than that of acrylic emulsion due to delocalization of radical in butadiene unit having conjugated double bond. A latex stability is the most important properties owing to use intact without separating polymer from base latex. For reducing polymerization time without decreasing any properties of latex, carbon tetra-chloride which has been used as the most popular chain transfer agent was replaced to combination of tert-dodecylmercaptane and ${\alpha}$-methylstyrene dimer. The replacement yielded reducement or 2 hr in polymerization time. In the increment step, charge amount of acrylic acid was limited to 0.3 part to restrain viscosity enhancement. Just after initial step, addition of 0.1 part acrylamide prevent polymer chain from diffusing between two region followed by giving hardness and final good adhesive force to latex particles.

Improvement of Abrasion and Debris on Styrene-Butadiene-Styrene Block Copolymer with Carboxylated SBR Latex and Zinc Oxide (카르복실화 SBR 라텍스와 산화아연을 이용한 SBS의 내마모성과 데브리스(debris) 개선 연구)

  • Lee, Jin Hyok;Bae, Jong Woo;Kim, Jung Su;Yoon, Yoo-Mi;Jo, Nam-Ju
    • Elastomers and Composites
    • /
    • v.48 no.3
    • /
    • pp.225-231
    • /
    • 2013
  • In this study, we observed the effect of carboxylated SBR latex and zinc oxide on styrene-butadiene-styrene( SBS) composites for improving abrasion and debris. SBS composite, which added only silica, showed poor mechanical properties, NBS abrasion, and debris, caused by strong filler-filler interaction of silica. In case of adding carboxylated SBR latex, mechanical properties, NBS abrasion and debris of SBS composite were improved. Because of carboxyl group of carboxylated SBR latex interacted with silanol group of silica. Both carboxylated SBR latex and zinc oxide were added, SBS composite showed highest mechanical properties, NBS abrasion, and debris by forming ion cluster between carboxylated SBR latex and zinc oxide. By FT-IR analysis, ion clusters were confirmed that observed zinc carboxylated group stretch peak at $1550{\sim}1650cm^{-1}$ range. SBS composite, SC-4, showed excellent mechanical properties ; tensile strength $156kgf/cm^2$, elongation 936%, tear strength 59.4kgf/cm ; and excellent abrasion characteristics ; NBS abrasion 338%. Also, debris of SC-4 was minimized and showed wave-shape in fracture surface.

Preparation of Methyl Methacrylate-Styrene System Core-Shell Latex by Emulsion Polymerization (유화중합에 의한 Methyl Methacrylate-Styrene계 Core-Shell 라텍스 입자 제조에 관한 연구)

  • Kim, Nam-Seok;Kim, Duck-Sool;Lee, Seok-Hee;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.96-105
    • /
    • 2005
  • Core-shell polymers of methyl methacrylate-styrene system were prepared by sequential emulsion polymerization in the presence of sodium dodecyl benzene sulfonate(SDBS) as an emulsifier using ammonium persulfate(APS) in an initiator and the characteristics of these core-shell polymers were evaluated. Core-shell composite latex has the both properties of core and shell components in a particle, whereas polymer blends or copolymers show a combined physical properties of two homopolymers. This unique behavior of core-shell composite latex can be used in various industrial fields. However, in preparation of core-shell composite latex, several unexpected matters are observed, for examples, particle coagulation, low degree of polymerization, and formation of new particles during shell polymerization. To solve this matters, we study the effects of surfactant concentrations, initiator concentrations, and reaction temperature on the core-shell structure of PMMA-PSt and PSt-PMMA. Particle size and particles distribution were measured by using particle size analyzer, and the morphology of the core-shell composite latex was observed by using transmission electron microscope. Glass temperature was also measured by using differential scanning calorimeter. To identify the core-shell structure, pH of the composite latex solutions was measured.

Preparation of Void Latex Particles: Effects of Reaction Parameters on the Mean Particle Diameter and the Solid Content (중공 입자의 제조: 반응 인자가 평균 입자 크기와 고형분 함량에 미치는 영향)

  • Lee, Kee Jeung;Seo, Kyung Won;Mok, Young Il
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.758-762
    • /
    • 1998
  • In preparing void latex particles by emulsion polymerization, the weight mean particle size of which is ranged $0.3{\mu}m{\sim}1.5{\mu}m$, reaction parameters were investigated in order to elucidate their effects on the size distribution and the solid content of emulsion polymer. Experimental results showed that the weight mean particle size of hydrophillic core polymer was reduced as the concentration of sodium dodecylbenzene sulfonate (SDS) increased. The size of void polymethyl-methacrylate-polystyrene composite latex particles became larger as the concentration of styrene monomer and the sodium persulfate increased. However, the size of void latex particles was reduced as the feeding rate of acrylic acid increased. The solid content of emulsion polymer was strongly dependent on the addition of stylene monomer. By increasing the concentration of styrene monomer the solid content of emulsion polymer increased linearly.

  • PDF

Freezing and Thawing Resistance of Latex Modified Concrete with Latex Content (라텍스 혼입에 따른 LMC의 동결융해 저항특성평가)

  • 이주형;정원경;김동호;이봉학;원치문;이정호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.497-502
    • /
    • 2000
  • This study was performed to change the latex content for properties of freezing-thawing resistance. When styrene-butadiene latex is added to portland cement, aggregate and water, a concrete with the color, consistency and workability of ordinary conventional concrete results, but with 20% to 35% less water. When cured, the concrete consists of hydrated cement and aggregate interconnected by a film of latex particles. In general, increasing the amount of latex will produce concrete with increased tensile and flexural strength and lower modulus of elasticity. Air entrainment has been used in conventional concrete for the past 50 years to impart freeze-thaw resistance. Latex modified concrete does not need additional air entrainment for freeze-thaw resistance provided adequate cure occurs.

  • PDF