의료 데이터를 이용하여 인공지능 기계학습 연구를 수행할 때 자주 마주하는 문제는 데이터 불균형, 데이터 부족 등이며 특히 정제된 충분한 데이터를 구하기 힘들다는 것이 큰 문제이다. 본 연구에서는 이를 해결하기 위해 GAN(Generative Adversarial Network) 기반 고해상도 의료 영상을 생성하는 프레임워크를 개발하고자 한다. 각 해상도 마다 Scale 의 Gradient 를 동시에 학습하여 빠르게 고해상도 이미지를 생성해낼 수 있도록 했다. 고해상도 이미지를 생성하는 Neural Network 를 고안하였으며, PGGAN, Style-GAN 과의 성능 비교를 통해 제안된 모델이 양질의 고해상도 의료영상 이미지를 더 빠르게 생성할 수 있음을 확인하였다. 이를 통해 인공지능 기계학습 연구에 있어서 의료 영상의 데이터 부족, 데이터 불균형 문제를 해결할 수 있는 Data augmentation 이나, Anomaly detection 등의 연구에 적용할 수 있다.
현재 한국의 웹툰은 세계 디지털 만화 시장을 선도하고 있다. 웹툰은 세계 각국 다양한 언어로 서비스되고 있으며 웹툰의 IP(지식재산권)를 이용해 제작된 드라마와 영화가 크게 흥행하면서 웹툰의 영상화 작업도 점점 많아지고 있다. 그러나 이러한 웹툰의 성공과 함께 웹툰 작가의 노동 환경이 중요한 문제로 떠오르고 있다. 「2021년 만화 이용자 실태조사」에 따르면, 웹툰 작가의 하루 평균 작업시간은 10.5시간이며 일주일 평균 5.9일을 창작활동에 사용한다. 작가들은 매주 많은 분량의 그림을 그려야 하는데, 웹툰 간의 경쟁은 더욱 치열해지고 있으며 회 당 작가가 그려야 할 분량은 점점 늘어가고 있다. 따라서, 이 연구에서는 딥러닝 기술을 이용하여 웹툰 배경 이미지를 생성하고 웹툰 제작에 활용할 것을 제안한다. 웹툰의 주요 인물은 작가의 독창성이 상당 부분 포함되는 영역이지만, 배경 그림은 비교적 반복적이며 독창성이 필요하지 않은 영역이기 때문에, 작가의 작화 스타일과 유사한 배경 그림을 생성할 수 있다면 웹툰 제작에 유용하게 사용될 수 있다. 배경 생성은 image-to-image translation에서 좋은 성능을 보여주고 있는 CycleGAN과 카툰(cartoon) 스타일에 특화된 CartoonGAN을 이용한다. 이러한 생성은 과도한 업무환경에 처한 작가들의 노동 시간을 단축하고 웹툰과 기술의 융합에 기여할 것으로 기대된다.
Traditionally, tooth restoration has been carried out by replicating teeth using plaster-based materials. However, recent technological advances have simplified the production process through the introduction of computer-aided design(CAD) systems. Nevertheless, dental restoration varies among individuals, and the skill level of dental technicians significantly influences the accuracy of the manufacturing process. To address this challenge, this paper proposes an approach to designing personalized tooth restorations using Generative Adversarial Network(GAN), a widely adopted technique in computer vision. The primary objective of this model is to create customized dental prosthesis for each patient by utilizing 3D data of the specific teeth to be treated and their corresponding opposite tooth. To achieve this, the 3D dental data is converted into a depth map format and used as input data for the GAN model. The proposed model leverages the network architecture of Pixel2Style2Pixel, which has demonstrated superior performance compared to existing models for image conversion and dental prosthesis generation. Furthermore, this approach holds promising potential for future advancements in dental and implant production.
Although the work of neural style transfer has shown successful applications in transferring the style of a certain type of artistic painting, it is less effective in transferring Oriental paintings. In this paper, we explore three methods which are effective in transferring Oriental paintings. Then, we take a typical network from each method to carry on the experiment, in view of three different methods to Oriental paintings style transfer effect has carried on the discussion.
Most vehicle detection methods have poor vehicle feature extraction performance at night, and their robustness is reduced; hence, this study proposes a night vehicle detection method based on style transfer image enhancement. First, a style transfer model is constructed using cycle generative adversarial networks (cycleGANs). The daytime data in the BDD100K dataset were converted into nighttime data to form a style dataset. The dataset was then divided using its labels. Finally, based on a YOLOv5s network, a nighttime vehicle image is detected for the reliable recognition of vehicle information in a complex environment. The experimental results of the proposed method based on the BDD100K dataset show that the transferred night vehicle images are clear and meet the requirements. The precision, recall, mAP@.5, and mAP@.5:.95 reached 0.696, 0.292, 0.761, and 0.454, respectively.
이미지와 비디오 합성 기술에 대한 수요가 늘어남에 따라, 인간의 손에만 의존하여 이미지나 비디오를 합성하는데에는 시간과 자원이 한정적이며, 전문적인 지식을 요한다. 이러한 문제를 해결하기 위해 최근에는 스타일 변환 네트워크를 통해 이미지를 변환하고, 믹싱하여 생성하는 알고리즘이 등장하고 있다. 이에 본 논문에서는 GAN을 이용한 스타일 변환 네트워크를 통한 자연스러운 스타일 믹싱에 대해 연구했다. 먼저 애니메이션 토이 스토리의 등장인물에 대한 데이터를 구축하고, 모델을 학습하고 두 개의 모델을 블렌딩하는 일련의 과정을 거쳐 모델을 준비한다. 그 다음에 블렌딩된 모델을 통해 타겟 이미지에 대하여 스타일 믹싱을 진행하며, 이 때 이미지 해상도와 projection 반복 값으로 스타일 변환 정도를 조절한다. 최종적으로 스타일 믹싱한 결과 이미지들을 바탕으로 하여 스타일 변형, 스타일 합성이 된 인물에 대한 동영상을 생성한다.
This paper proposes a method to estimate the underwater target object's yaw angle using a sonar image. A simulator modeling imaging mechanism of a sonar sensor and a generative adversarial network for style transfer generates realistic template images of the target object by predicting shapes according to the viewing angles. Then, the target object's yaw angle can be estimated by comparing the template images and a shape taken in real sonar images. We verified the proposed method by conducting water tank experiments. The proposed method was also applied to AUV in field experiments. The proposed method, which provides bearing information between underwater objects and the sonar sensor, can be applied to algorithms such as underwater localization or multi-view-based underwater object recognition.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권6호
/
pp.2115-2127
/
2021
Although significant progress has been made in synthesizing visually realistic face images by Generative Adversarial Networks (GANs), there still lacks effective approaches to provide fine-grained control over the generation process for semantic facial attribute editing. In this work, we propose a novel cross channel self-attention based generative adversarial network (CCA-GAN), which weights the importance of multiple channels of features and archives pixel-level feature alignment and conversion, to reduce the impact on irrelevant attributes while editing the target attributes. Evaluation results show that CCA-GAN outperforms state-of-the-art models on the CelebA dataset, reducing Fréchet Inception Distance (FID) and Kernel Inception Distance (KID) by 15~28% and 25~100%, respectively. Furthermore, visualization of generated samples confirms the effect of disentanglement of the proposed model.
In this research, we study the problem of font image skeletonization using an end-to-end deep adversarial network, in contrast with the state-of-the-art methods that use mathematical algorithms. Several studies have been concerned with skeletonization, but a few have utilized deep learning. Further, no study has considered generative models based on deep neural networks for font character skeletonization, which are more delicate than natural objects. In this work, we take a step closer to producing realistic synthesized skeletons of font characters. We consider using an end-to-end deep adversarial network, SkelGAN, for font-image skeletonization, in contrast with the state-of-the-art methods that use mathematical algorithms. The proposed skeleton generator is proved superior to all well-known mathematical skeletonization methods in terms of character structure, including delicate strokes, serifs, and even special styles. Experimental results also demonstrate the dominance of our method against the state-of-the-art supervised image-to-image translation method in font character skeletonization task.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.