• 제목/요약/키워드: styleGAN

검색결과 47건 처리시간 0.026초

GAN 기반 고해상도 의료 영상 생성을 위한 연구 (GAN-based research for high-resolution medical image generation)

  • 고재영;조백환;정명진
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.544-546
    • /
    • 2020
  • 의료 데이터를 이용하여 인공지능 기계학습 연구를 수행할 때 자주 마주하는 문제는 데이터 불균형, 데이터 부족 등이며 특히 정제된 충분한 데이터를 구하기 힘들다는 것이 큰 문제이다. 본 연구에서는 이를 해결하기 위해 GAN(Generative Adversarial Network) 기반 고해상도 의료 영상을 생성하는 프레임워크를 개발하고자 한다. 각 해상도 마다 Scale 의 Gradient 를 동시에 학습하여 빠르게 고해상도 이미지를 생성해낼 수 있도록 했다. 고해상도 이미지를 생성하는 Neural Network 를 고안하였으며, PGGAN, Style-GAN 과의 성능 비교를 통해 제안된 모델이 양질의 고해상도 의료영상 이미지를 더 빠르게 생성할 수 있음을 확인하였다. 이를 통해 인공지능 기계학습 연구에 있어서 의료 영상의 데이터 부족, 데이터 불균형 문제를 해결할 수 있는 Data augmentation 이나, Anomaly detection 등의 연구에 적용할 수 있다.

CartoonGAN 알고리즘을 이용한 웹툰(Webtoon) 배경 이미지 생성에 관한 연구 (A Study on Webtoon Background Image Generation Using CartoonGAN Algorithm)

  • 오세규;강주영
    • 한국빅데이터학회지
    • /
    • 제7권1호
    • /
    • pp.173-185
    • /
    • 2022
  • 현재 한국의 웹툰은 세계 디지털 만화 시장을 선도하고 있다. 웹툰은 세계 각국 다양한 언어로 서비스되고 있으며 웹툰의 IP(지식재산권)를 이용해 제작된 드라마와 영화가 크게 흥행하면서 웹툰의 영상화 작업도 점점 많아지고 있다. 그러나 이러한 웹툰의 성공과 함께 웹툰 작가의 노동 환경이 중요한 문제로 떠오르고 있다. 「2021년 만화 이용자 실태조사」에 따르면, 웹툰 작가의 하루 평균 작업시간은 10.5시간이며 일주일 평균 5.9일을 창작활동에 사용한다. 작가들은 매주 많은 분량의 그림을 그려야 하는데, 웹툰 간의 경쟁은 더욱 치열해지고 있으며 회 당 작가가 그려야 할 분량은 점점 늘어가고 있다. 따라서, 이 연구에서는 딥러닝 기술을 이용하여 웹툰 배경 이미지를 생성하고 웹툰 제작에 활용할 것을 제안한다. 웹툰의 주요 인물은 작가의 독창성이 상당 부분 포함되는 영역이지만, 배경 그림은 비교적 반복적이며 독창성이 필요하지 않은 영역이기 때문에, 작가의 작화 스타일과 유사한 배경 그림을 생성할 수 있다면 웹툰 제작에 유용하게 사용될 수 있다. 배경 생성은 image-to-image translation에서 좋은 성능을 보여주고 있는 CycleGAN과 카툰(cartoon) 스타일에 특화된 CartoonGAN을 이용한다. 이러한 생성은 과도한 업무환경에 처한 작가들의 노동 시간을 단축하고 웹툰과 기술의 융합에 기여할 것으로 기대된다.

치아 보철물 디자인을 위한 이미지 대 이미지 변환 GAN 모델 (An Image-to-Image Translation GAN Model for Dental Prothesis Design)

  • 김태민;김재곤
    • 한국IT서비스학회지
    • /
    • 제22권5호
    • /
    • pp.87-98
    • /
    • 2023
  • Traditionally, tooth restoration has been carried out by replicating teeth using plaster-based materials. However, recent technological advances have simplified the production process through the introduction of computer-aided design(CAD) systems. Nevertheless, dental restoration varies among individuals, and the skill level of dental technicians significantly influences the accuracy of the manufacturing process. To address this challenge, this paper proposes an approach to designing personalized tooth restorations using Generative Adversarial Network(GAN), a widely adopted technique in computer vision. The primary objective of this model is to create customized dental prosthesis for each patient by utilizing 3D data of the specific teeth to be treated and their corresponding opposite tooth. To achieve this, the 3D dental data is converted into a depth map format and used as input data for the GAN model. The proposed model leverages the network architecture of Pixel2Style2Pixel, which has demonstrated superior performance compared to existing models for image conversion and dental prosthesis generation. Furthermore, this approach holds promising potential for future advancements in dental and implant production.

동양화의 예술적 스타일 탐구 (Exploring the Artistic Style of the Oriental Paintings)

  • 이소려;이효종
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.475-478
    • /
    • 2019
  • Although the work of neural style transfer has shown successful applications in transferring the style of a certain type of artistic painting, it is less effective in transferring Oriental paintings. In this paper, we explore three methods which are effective in transferring Oriental paintings. Then, we take a typical network from each method to carry on the experiment, in view of three different methods to Oriental paintings style transfer effect has carried on the discussion.

Vehicle Detection at Night Based on Style Transfer Image Enhancement

  • Jianing Shen;Rong Li
    • Journal of Information Processing Systems
    • /
    • 제19권5호
    • /
    • pp.663-672
    • /
    • 2023
  • Most vehicle detection methods have poor vehicle feature extraction performance at night, and their robustness is reduced; hence, this study proposes a night vehicle detection method based on style transfer image enhancement. First, a style transfer model is constructed using cycle generative adversarial networks (cycleGANs). The daytime data in the BDD100K dataset were converted into nighttime data to form a style dataset. The dataset was then divided using its labels. Finally, based on a YOLOv5s network, a nighttime vehicle image is detected for the reliable recognition of vehicle information in a complex environment. The experimental results of the proposed method based on the BDD100K dataset show that the transferred night vehicle images are clear and meet the requirements. The precision, recall, mAP@.5, and mAP@.5:.95 reached 0.696, 0.292, 0.761, and 0.454, respectively.

GAN을 이용한 동영상 스타일 생성 및 합성 네트워크 구축 (A Video Style Generation and Synthesis Network using GAN)

  • 최희조;박구만;김상준;이유진;상혜준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.727-730
    • /
    • 2021
  • 이미지와 비디오 합성 기술에 대한 수요가 늘어남에 따라, 인간의 손에만 의존하여 이미지나 비디오를 합성하는데에는 시간과 자원이 한정적이며, 전문적인 지식을 요한다. 이러한 문제를 해결하기 위해 최근에는 스타일 변환 네트워크를 통해 이미지를 변환하고, 믹싱하여 생성하는 알고리즘이 등장하고 있다. 이에 본 논문에서는 GAN을 이용한 스타일 변환 네트워크를 통한 자연스러운 스타일 믹싱에 대해 연구했다. 먼저 애니메이션 토이 스토리의 등장인물에 대한 데이터를 구축하고, 모델을 학습하고 두 개의 모델을 블렌딩하는 일련의 과정을 거쳐 모델을 준비한다. 그 다음에 블렌딩된 모델을 통해 타겟 이미지에 대하여 스타일 믹싱을 진행하며, 이 때 이미지 해상도와 projection 반복 값으로 스타일 변환 정도를 조절한다. 최종적으로 스타일 믹싱한 결과 이미지들을 바탕으로 하여 스타일 변형, 스타일 합성이 된 인물에 대한 동영상을 생성한다.

Sonar-based yaw estimation of target object using shape prediction on viewing angle variation with neural network

  • Sung, Minsung;Yu, Son-Cheol
    • Ocean Systems Engineering
    • /
    • 제10권4호
    • /
    • pp.435-449
    • /
    • 2020
  • This paper proposes a method to estimate the underwater target object's yaw angle using a sonar image. A simulator modeling imaging mechanism of a sonar sensor and a generative adversarial network for style transfer generates realistic template images of the target object by predicting shapes according to the viewing angles. Then, the target object's yaw angle can be estimated by comparing the template images and a shape taken in real sonar images. We verified the proposed method by conducting water tank experiments. The proposed method was also applied to AUV in field experiments. The proposed method, which provides bearing information between underwater objects and the sonar sensor, can be applied to algorithms such as underwater localization or multi-view-based underwater object recognition.

A Novel Cross Channel Self-Attention based Approach for Facial Attribute Editing

  • Xu, Meng;Jin, Rize;Lu, Liangfu;Chung, Tae-Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권6호
    • /
    • pp.2115-2127
    • /
    • 2021
  • Although significant progress has been made in synthesizing visually realistic face images by Generative Adversarial Networks (GANs), there still lacks effective approaches to provide fine-grained control over the generation process for semantic facial attribute editing. In this work, we propose a novel cross channel self-attention based generative adversarial network (CCA-GAN), which weights the importance of multiple channels of features and archives pixel-level feature alignment and conversion, to reduce the impact on irrelevant attributes while editing the target attributes. Evaluation results show that CCA-GAN outperforms state-of-the-art models on the CelebA dataset, reducing Fréchet Inception Distance (FID) and Kernel Inception Distance (KID) by 15~28% and 25~100%, respectively. Furthermore, visualization of generated samples confirms the effect of disentanglement of the proposed model.

SkelGAN: A Font Image Skeletonization Method

  • Ko, Debbie Honghee;Hassan, Ammar Ul;Majeed, Saima;Choi, Jaeyoung
    • Journal of Information Processing Systems
    • /
    • 제17권1호
    • /
    • pp.1-13
    • /
    • 2021
  • In this research, we study the problem of font image skeletonization using an end-to-end deep adversarial network, in contrast with the state-of-the-art methods that use mathematical algorithms. Several studies have been concerned with skeletonization, but a few have utilized deep learning. Further, no study has considered generative models based on deep neural networks for font character skeletonization, which are more delicate than natural objects. In this work, we take a step closer to producing realistic synthesized skeletons of font characters. We consider using an end-to-end deep adversarial network, SkelGAN, for font-image skeletonization, in contrast with the state-of-the-art methods that use mathematical algorithms. The proposed skeleton generator is proved superior to all well-known mathematical skeletonization methods in terms of character structure, including delicate strokes, serifs, and even special styles. Experimental results also demonstrate the dominance of our method against the state-of-the-art supervised image-to-image translation method in font character skeletonization task.