• Title/Summary/Keyword: strut-support systems

Search Result 5, Processing Time 0.023 seconds

The Behavior of Retention Wall By 3-D Finite Element Method (3차원 유한요소해석에 의한 흙막이 벽체의 거동특성)

  • 이진구;장서만;전성곤;이종규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.347-354
    • /
    • 2001
  • In this study, 3-D FEM analysis are carried out to investigate the effect of the corners and re-entrant corners which can't be analysed by 2-D analysis. The excavation shape is re-entrant type conditions. The wall displacement, earth pressure and effectiveness of the corner struts are investigated in the re-entrant case, The 3D analysis are peformed to evaluate the effect of various factors, such as re-entrant corner size, excavation depth, and presence of struts. The wall displacement and earth pressures are influenced the size of re-entrant corner. Therefore, the effect of re-entrant corner should be considered in the evaluation of the earth pressure and displacement of the corners. Finally, strut-support systems are not effective at the re-entrant corner.

  • PDF

Artificial Intelligence Image Segmentation for Extracting Construction Formwork Elements (거푸집 부재 인식을 위한 인공지능 이미지 분할)

  • Ayesha Munira, Chowdhury;Moon, Sung-Woo
    • Journal of KIBIM
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Concrete formwork is a crucial component for any construction project. Artificial intelligence offers great potential to automate formwork design by offering various design options and under different criteria depending on the requirements. This study applied image segmentation in 2D formwork drawings to extract sheathing, strut and pipe support formwork elements. The proposed artificial intelligence model can recognize, classify, and extract formwork elements from 2D CAD drawing image and training and test results confirmed the model performed very well at formwork element recognition with average precision and recall better than 80%. Recognition systems for each formwork element can be implemented later to generate 3D BIM models.

Consideration of Failure Type on the Ground Excavation (지하굴착에 따른 붕괴유형에 대한 고찰)

  • Lee, Jung-Jae;Jung, Kyung-Sik;Lee, Chang-No
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.660-670
    • /
    • 2009
  • Neighboring construction becomes mainstream of Ground excavation in downtown area. This causes the displacement, deformation, stress condition, etc of the ground surroundings. Therefore Neighboring construction have an effect on Neighboring structure. All these years a lot of Neighboring construction carried out, and the accumulation of technology also get accomplished. But earth retaining structure collapse happens yet. Types of earth retaining structure collapse are 12. 1. Failure of anchor or strut system, 2. Insufficiency of penetration, 3. H-pile Failure on excessive bending moment, 4. Slope sliding failure, 5. Excessive settlement of the back, 6. Deflection of H-pile, 7. Joint failure of coupled H-pile, 8. Rock failure when H-pile penetration is rock mass, 9. Plane arrangement of support systems are mechanically weak, 10. Boiling, 11. Heaving, 12. Over excavation. But field collapses are difficult for classification according to the type, because collapse process are complex with various types. When we consider the 12 collapse field, insufficient recognition of ground condition is 4 case. Thorough construction management prevents from fault construction. For limitations of soil survey, It is difficult to estimate ground condition exactly. Therefore, it should estimate the safety of earth retaining system, plan for necessary reinforcement, according to measurement and observation continuously.

  • PDF

Performance of IPS Earth Retention System in Soft Clay (연약지반에 적용된 IPS 흙막이 시스템의 거동 특성)

  • Kim, Nak-Kyung;Park, Jong-Sik;Oh, Hee-Jin;Han, Man-Yop;Kim, Moon-Young;Kim, Sung-Bo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.5-13
    • /
    • 2007
  • The performance of innovative prestressed support (IPS) earth retention system applied in soft clay was investigated and presented. The IPS wale system provides a high flexural stiffness to resist the bending by lateral earth pressure, and transfers lateral earth pressure to strut supports. The IPS wale system provides a larger spacing of support than conventional braced and anchored systems. The IPS earth retention system was selected for temporary earth support in a building construction in North Busan area. The excavation was made 28.8 m wide, 52.0 m long, and 16.1 m deep through loose fill to soft clay. The IPS system consists of 650 mm thick slurry walls, and five levels of IPS wales and struts. Field monitoring data were collected including wall deflections at six locations, ground water levels at four locations, IPS wale deflections at thirty locations, and axial loads on struts at twenty locations, during construction. The IPS earth retention system applied in soft clay performed successfully within a designed criterion. Field measurements were compared with design assumptions of the IPS earth retention system. The applicability and stability of the IPS earth retention system in soft clay were investigated and evaluated.

Finite Element Analysis of Earth Retention System with Prestressed Wales (프리스트레스트 띠장을 적용한 흙막이 시스템의 유한요소해석)

  • Park, Jong-Sik;Kim, Sung-Kyu;Joo, Yong-Sun;Kim, Nak-Kyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.3
    • /
    • pp.25-34
    • /
    • 2008
  • A finite element analysis was performed for new earth retention system with prestressed wales. A 3D finite element model was adopted in this study to investigate the behavior of the earth retention system with prestressed wales. A procedure of the 3D finite element modeling of this earth retention system was presented. The procedure included the modeling of soil, wall, strut, and members of prestressed wale system which consists of wale, support leg, and steel wires, and the interface modeling of soil-wall and wall-wale. The numerical predictions of lateral wall deflection, and axial load on the members of prestressed wale systems and struts were evaluated in comparison with the measurements obtained from field instruments. A sensitivity analysis was performed using the proposed 3D finite element model to investigate the behavior of new earth retention system on a wide range of prestress load conditions of steel wires. The lateral deflection of the wall and wale, the bending moment of the wale, and the lateral earth pressure distribution on the wall were computed. Implications of the results from this study were discussed.