• Title/Summary/Keyword: structures in hand

Search Result 850, Processing Time 0.028 seconds

STM Study of 2-Mercaptoethanol Self-Assembled Monolayer on Au(111)

  • Hyeon, Mun Seop;Lee, Chung Gyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.2
    • /
    • pp.213-218
    • /
    • 2001
  • Presented are the STM images of self-assembled monolayer of 2-mercaptoethanol on Au(111). Striped structures of ($6{\times}3_{\frac{1}{2}}$), ($5{\times}3_{\frac{1}{2}}$), ($4{\times}3_{\frac{1}{2}}$) and compact-($5{\times}3_{\frac{1}{2}}$) were observed after annealing at $80^{\circ}C.$ Analysis of the ordered structures revealed that the basic fundamental units of the ordered structures were three crystallographically non-equivalent ($3_{\frac{1}{2}}{\times}3_{\frac{1}{2}}$) $R30^{\circ}$ assemblies, and that the way of combination of the assemblies produced the four different structures. The($6{\times}3_{\frac{1}{2}}$) structure ( $\theta$ = 0.33) was composed of one ($3_{\frac{1}{2}}{\times}3_{\frac{1}{2}}$)$R30^{\circ}$ assembly, while the ($5{\times}3_{\frac{1}{2}}$) ( $\theta$ = 0.30) and ($4{\times}3_{\frac{1}{2}}$) ( $\theta$ = 0.38) structures were consisted of two ($3_{\frac{1}{2}}{\times}3_{\frac{1}{2}}$) $R30^{\circ}$ assemblies, separated by 5a and 4a, respectively. Furthermore, the compact-(5X 3½) structure ( $\theta$ = 0.50) was obtained by overlapping three ($3_{\frac{1}{2}}{\times}3_{\frac{1}{2}}$) $R30^{\circ}$ assemblies. In spite of the diversity in the adsorption structures, all the adsorption sites of 2-mercaptoethanol were fundamentally identical. On the other hand, the unannealed primitive SAM of 2-mercaptoethanol was characterized by two observations: a short-range order keeping the adsorbed molecules at approximately $3_{\frac{1}{2}}$ a and the small domains of the striped structures supporting that the observed surface structures on the annealed surface were the extension of the primitive layer of 2-mercaptoethanol. Comparing these observations with the already published structures of ethanthiol, it was concluded that the interaction between the hydroxyl groups of 2-mercaptoethanol might play a significant role in the adsorption step of 2-mercaptoethanol on Au(111) to organize the adsorption structures different from those of ethanthiol.

Efficient Vector Superposition Method for Dynamic Analysis of Structures (구조물의 동적해석을 위한 효율적인 벡터중첩법)

  • 김병완;정형조;김운학;이인원
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.39-45
    • /
    • 2003
  • Modified Lanczos vector superposition method is proposed for efficient dynamic analysis of structures, The proposed method is based on the modified Lanczos algorithm that generates stiffness-orthonormal Lanczos vectors. The proposed Lanczos vector superposition method has the same accuracy and efficiency as the conventional Lonczos vector superposition method in the analysis of structures under single input loads. On the other hand, the proposed method is more efficient than the conventional method in the analysis of structures under multi-input loads. The effectiveness of the proposed method is verified by analyzing two numerical examples.

Effect of Proton Irradiation on the Magnetic Properties of Antiferromagnet/ferromagnet Structures

  • Kim, Dong-Jun;Park, Jin-Seok;Ryu, Ho Jin;Jeong, Jong-Ryul;Chung, Chang-Kyu;Park, Byong-Guk
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.159-163
    • /
    • 2016
  • Antiferromagnet (AFM)/ferromagnet (FM) bilayer structures are widely used in the magnetic devices of sensor and memory applications, as AFM materials can induce unidirectional anisotropy of the FM material via exchange coupling. The strength of the exchange coupling is known to be sensitive to quality of the interface of the AFM/FM bilayers. In this study, we utilize proton irradiation to modify the interface structures and investigate its effect on the magnetic properties of AFM/FM structures, including the exchange bias and magnetic thermoelectric effect. The magnetic properties of IrMn/CoFeB structures with various IrMn thicknesses are characterized after they are exposed to a proton beam of 3 MeV and $1{\sim}5{\times}10^{14}ions/cm^2$. We observe that the magnetic moment is gradually reduced as the amount of the dose is increased. On the other hand, the exchange bias field and thermoelectric voltage are not significantly affected by proton irradiation. This indicates that proton irradiation has more of an influence on the bulk property of the FM CoFeB layer and less of an effect on the IrMn/CoFeB interface.

A Study on a Planar Folded RFID Reader Antenna by Minimizing Hand Effects For UHF Band Application (Hand effect를 최소화한 평판 격자형 UHF대역 RFID 리더 안테나에 관한 연구)

  • Park, Joung-Geun;Lee, Jong-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.4
    • /
    • pp.80-85
    • /
    • 2012
  • In this paper, a new planar folded UHF band RFID reader antenna is suggested. For the antenna suggested in this paper, 4 PIFA (Planar Inverted F Antenna) micro-strip structures are adopted. The size is $50mm{\times}50mm{\times}6.2mm$. The gain of the antenna is 1.1 dBi, the VSWR is 1.2:1, and the efficiency is 63.3 %. The radiation pattern is designed as upper direction. Identification distance for the RFID tags is improved by minimizing hand effects with properly integrating 4 PIFAs.

Seismic performance of precast joint in assembled monolithic station: effect of assembled seam shape and position

  • Liu, Hongtao;Du, Xiuli
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.611-621
    • /
    • 2019
  • Precast concrete structure has many advantages, but the assembled seam will affect potentially the overall seismic performance of structure. Based on the sidewall joint located in the bottom of assembled monolithic subway station, the main objectives of this study are, on one hand to present an experimental campaign on the seismic behavior of precast sidewall joint (PWJ) and cast-in-place sidewall joint (CWJ) subjected to low-cycle repeated loading, and on the other hand to explore the effect of shape and position of assembled seam on load carrying capacity and crack width of precast sidewall joint. Two full-scale specimens were designed and tested. The important index of failure pattern, loading carrying capacity, deformation performance and crack width were evaluated and compared. Based on the test results, a series of different height and variably-shape of assembled seam of precast sidewall joint were considered. The test and numerical investigations indicate that, (1) the carrying capacity and deformation capacity of precast sidewall and cast-in-place sidewall were very similar, but the crack failure pattern, bending deformation and shearing deformation in the plastic hinge zone were different obviously; (2) the influence of the assembled seam should be considered when precast underground structures located in the aquifer water-bearing stratum; (3) the optimal assembled seam shape and position can be suggested for the design of precast underground concrete structures according to the analysis results.

A practical model for simulating nonlinear behaviour of FRP strengthened RC beam-column joints

  • Shayanfar, Javad;Bengar, Habib Akbarzadeh
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.49-74
    • /
    • 2018
  • Generally, beam-column joints are taken into account as rigid in assessment of seismic performance of reinforced concrete (RC) structures. Experimental and numerical studies have proved that ignoring nonlinearities in the joint core might crucially affect seismic performance of RC structures. On the other hand, to improve seismic behaviour of such structures, several strengthening techniques of beam-column joints have been studied and adopted in practical applications. Among these strengthening techniques, the application of FRP materials has extensively increased, especially in case of exterior RC beam-column joints. In current paper, to simulate the inelastic response in the core of RC beam-column joints strengthened by FRP sheets, a practical joint model has been proposed so that the effect of FRP sheets on characteristics of an RC joint were considered in principal tensile stress-joint rotation relations. To determine these relations, a combination of experimental results and a mechanically-based model has been developed. To verify the proposed model, it was applied to experimental specimens available in the literature. Results revealed that the model could predict inelastic response of as-built and FRP strengthened joints with reasonable precision. The simple analytic procedure and the use of experimentally computed parameters would make the model sufficiently suitable for practical applications.

A simplified method for estimating the fundamental period of masonry infilled reinforced concrete frames

  • Jiang, Rui;Jiang, Liqiang;Hu, Yi;Ye, Jihong;Zhou, Lingyu
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.821-832
    • /
    • 2020
  • The fundamental period is an important parameter for seismic design and seismic risk assessment of building structures. In this paper, a simplified theoretical method to predict the fundamental period of masonry infilled reinforced concrete (RC) frame is developed based on the basic theory of engineering mechanics. The different configurations of the RC frame as well as masonry walls were taken into account in the developed method. The fundamental period of the infilled structure is calculated according to the integration of the lateral stiffness of the RC frame and masonry walls along the height. A correction coefficient is considered to control the error for the period estimation, and it is determined according to the multiple linear regression analysis. The corrected formula is verified by shaking table tests on two masonry infilled RC frame models, and the errors between the estimated and test period are 2.3% and 23.2%. Finally, a probability-based method is proposed for the corrected formula, and it allows the structural engineers to select an appropriate fundamental period with a certain safety redundancy. The proposed method can be quickly and flexibly used for prediction, and it can be hand-calculated and easily understood. Thus it would be a good choice in determining the fundamental period of RC frames infilled with masonry wall structures in engineering practice instead of the existing methods.

A SMA-based morphing flap: conceptual and advanced design

  • Ameduri, Salvatore;Concilio, Antonio;Pecora, Rosario
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.555-577
    • /
    • 2015
  • In the work at hand, the development of a morphing flap, actuated through shape memory alloy load bearing elements, is described. Moving from aerodynamic specifications, prescribing the morphed shape enhancing the aerodynamic efficiency of the flap, a suitable actuation architecture was identified, able to affect the curvature. Each rib of the flap was split into three elastic elements, namely "cells", connected each others in serial way and providing the bending stiffness to the structure. The edges of each cell are linked to SMA elements, whose contraction induces rotation onto the cell itself with an increase of the local curvature of the flap airfoil. The cells are made of two metallic plates crossing each others to form a characteristic "X" configuration; a good flexibility and an acceptable stress concentration level was obtained non connecting the plates onto the crossing zone. After identifying the main design parameters of the structure (i.e. plates relative angle, thickness and depth, SMA length, cross section and connections to the cell) an optimization was performed, with the scope of enhancing the achievable rotation of the cell, its ability in absorbing the external aerodynamic loads and, at the same time, containing the stress level and the weight. The conceptual scheme of the architecture was then reinterpreted in view of a practical realization of the prototype. Implementation issues (SMA - cells connection and cells relative rotation to compensate the impressed inflection assuring the SMA pre-load) were considered. Through a detailed FE model the prototype morphing performance were investigated in presence of the most severe load conditions.

A new principles for implementation and operation of foundations for machines: A review of recent advances

  • Golewski, Grzegorz Ludwik
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.317-327
    • /
    • 2019
  • The aim of this paper is to present the most important issues on the implementation, operation and maintenance of foundation for machines. The article presents the newest solutions both in terms of technology implementation as well as materials used in construction of such structures. Foundations for machines are special building structures used to transfer loads from an operating machine to the subsoil. The purpose of these foundations is not just to transfer loads, but also to reduce vibrations occurring during operation of the machine, i.e. their damping and preventing redistribution to other elements of the building. It should be noted that foundations for machines (particularly foundations for hammers) are the most dynamically loaded building structures. For these reasons, they require precise static and dynamic calculations, accuracy in their implementation and care for them after they have been made. Therefore, the paper in detail present the guidelines regarding: design, construction and maintenance of structures of this type. Furthermore, the most important parameters and characteristics of materials used for the construction of these foundations are described. As a result of the conducted analyzes, it was found that the concrete mix, in foundations for machines, should have a low water/binder ratio. For its execution, it is necessary to use broken aggregates from igneous rocks and binders modified with mineral additives and chemical admixtures. On the other hand, the reinforcement of composites should contain a large amount of structural reinforcement to prevent shrinkage cracks.

Integration of health monitoring and vibration control for smart building structures with time-varying structural parameters and unknown excitations

  • Xu, Y.L.;Huang, Q.;Xia, Y.;Liu, H.J.
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.807-830
    • /
    • 2015
  • When a building structure requires both health monitoring system and vibration control system, integrating the two systems together will be cost-effective and beneficial for creating a smart building structure with its own sensors (nervous system), processors (brain system), and actuators (muscular system). This paper presents a real-time integrated procedure to demonstrate how health monitoring and vibration control can be integrated in real time to accurately identify time-varying structural parameters and unknown excitations on one hand, and to optimally mitigate excessive vibration of the building structure on the other hand. The basic equations for the identification of time-varying structural parameters and unknown excitations of a semi-active damper-controlled building structure are first presented. The basic equations for semi-active vibration control of the building structure with time-varying structural parameters and unknown excitations are then put forward. The numerical algorithm is finally followed to show how the identification and the control can be performed simultaneously. The results from the numerical investigation of an example building demonstrate that the proposed method is feasible and accurate.