• Title/Summary/Keyword: structured residual generation

Search Result 5, Processing Time 0.02 seconds

A residual generator for fault detection/isolation of a class of nonlinear systems (비선형 공정의 고장검출을 위한 잔차발생알고리즘)

  • Ryu, Ji-Su;Lee, Sang-Moon;Lee, Kee-Sang;Park, Tae-Geon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2230-2232
    • /
    • 2004
  • A residual generation scheme that can be employed in the process fault detection and isolation systems for a class of nonlinear (control) systems is suggested. Although the scheme is a kind of observer scheme, the design of the observers employed for residual generation is very simple and the order of the observer is very low. In spite of the simplicity, the residual generation scheme provides the same information for the detection and isolation of the anticipated faults as the conventional multiple observer based schemes. The residuals may be structured so that fault isolation can be performed by pre-selected logic. An FDIS using the residual generation scheme is constructed and evaluated for a nonlinear DC motor system.

  • PDF

Optimal residual generation using parity space approach for a position servo system (패리티 공간기법을 이용한 위치 서보계의 최적 잔차 발생)

  • 최경영;박태건;이기상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1440-1443
    • /
    • 1997
  • The optimal residual generator based on parity relation approach for the fault detection and isolation of a arge diesel engine actuator position servo system is presented. The closed-loop residual generator is designed to have robustness against modeling errors and noise. Main purpose of the fault detection and isolation system in the process is to detect and isolate two important faults, i.e., actuatro fault and fault of speed sensor, that, if not detected and compensated, degrade the overall control system performance. Simulation results are give to show the practical applicability of the fault detecrtion and isloation scherme.

  • PDF

A New Dynamic Residual Generator for Process Fault Detection (프로세스고장검출을 위한 새로운 잔차발생기구)

  • 이기상;이상문
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.10
    • /
    • pp.575-582
    • /
    • 2003
  • A new FDOs (fault diagnostic observers) and the residual generation schemes using the FDOs are suggested for the process fault detection and isolation of linear (control) systems. The design method of the FDO is described, first, for the full measurement systems. Then it is extended for the systems with unmeasurable state variables. An unknown input observer is proposed and applied for the extension. The size of the observer bank may be the smallest, specially in full measurement systems, because the order of the proposed FDO is very low. In spite of the simplicity, the scheme provides the same information for the detection and isolation of the anticipated faults as the conventional multiple observer based schemes. The residuals may be structured so that fault isolation can be performed by pre-selected logic. An FDIS using the proposed scheme is constructed for the model of the four-tank system. Simulation results show the practical feasibility of the proposed scheme.

Estimation of residual stress in welding of dissimilar metals at nuclear power plants using cascaded support vector regression

  • Koo, Young Do;Yoo, Kwae Hwan;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.817-824
    • /
    • 2017
  • Residual stress is a critical element in determining the integrity of parts and the lifetime of welded structures. It is necessary to estimate the residual stress of a welding zone because residual stress is a major reason for the generation of primary water stress corrosion cracking in nuclear power plants. That is, it is necessary to estimate the distribution of the residual stress in welding of dissimilar metals under manifold welding conditions. In this study, a cascaded support vector regression (CSVR) model was presented to estimate the residual stress of a welding zone. The CSVR model was serially and consecutively structured in terms of SVR modules. Using numerical data obtained from finite element analysis by a subtractive clustering method, learning data that explained the characteristic behavior of the residual stress of a welding zone were selected to optimize the proposed model. The results suggest that the CSVR model yielded a better estimation performance when compared with a classic SVR model.

A Brief Review on Polarization Switching Kinetics in Fluorite-structured Ferroelectrics (플루오라이트 구조 강유전체 박막의 분극 반전 동역학 리뷰)

  • Kim, Se Hyun;Park, Keun Hyeong;Lee, Eun Been;Yu, Geun Taek;Lee, Dong Hyun;Yang, Kun;Park, Ju Yong;Park, Min Hyuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.330-342
    • /
    • 2020
  • Since the original report on ferroelectricity in Si-doped HfO2 in 2011, fluorite-structured ferroelectrics have attracted increasing interest due to their scalability, established deposition techniques including atomic layer deposition, and compatibility with the complementary-metal-oxide-semiconductor technology. Especially, the emerging fluorite-structured ferroelectrics are considered promising for the next-generation semiconductor devices such as storage class memories, memory-logic hybrid devices, and neuromorphic computing devices. For achieving the practical semiconductor devices, understanding polarization switching kinetics in fluorite-structured ferroelectrics is an urgent task. To understand the polarization switching kinetics and domain dynamics in this emerging ferroelectric materials, various classical models such as Kolmogorov-Avrami-Ishibashi model, nucleation limited switching model, inhomogeneous field mechanism model, and Du-Chen model have been applied to the fluorite-structured ferroelectrics. However, the polarization switching kinetics of fluorite-structured ferroelectrics are reported to be strongly affected by various nonideal factors such as nanoscale polymorphism, strong effect of defects such as oxygen vacancies and residual impurities, and polycrystallinity with a weak texture. Moreover, some important parameters for polarization switching kinetics and domain dynamics including activation field, domain wall velocity, and switching time distribution have been reported quantitatively different from conventional ferroelectrics such as perovskite-structured ferroelectrics. In this focused review, therefore, the polarization switching kinetics of fluorite-structured ferroelectrics are comprehensively reviewed based on the available literature.