• Title/Summary/Keyword: structured grid

Search Result 135, Processing Time 0.031 seconds

Numerical Analysis of Three-Dimensional Flow in a Forward Curved Centrifugal Fan (전향 원심 송풍기의 3차원 유동에 대한 수치해석)

  • Yoon, Joon-Yong;Maeng, Joo-Sung;Byun, Sung-Joon;Lee, Sang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.916-923
    • /
    • 2000
  • Numerical study of three-dimensional turbulent flow in a forward curved centrifugal fan is presented. Standard $k-{\varepsilon}$ turbulence model and non-orthogonal curvilinear coordinates arc used to consider the turbulent flow field and complex geometry. Finite Volume approach is adopted for discretization scheme and structured grid system is used to help convergence. Multiblock grid system is used for flow field and divided into five domains that are inlet, outlet, impeller, tip clearance and scroll. It is assumed that the flow field is steady and incompressible. These numerical results are compared with the experimental data inside a rotor and at the fan outlet. Most important flow features are captured through this numerical approach. Finally details of flow field inside a fan are described and analyzed.

Strategies of Diffusing Smart Grids for Low-carbon Green Growth: Grounded Theory Approach (저탄소 녹색성장을 위한 스마트그리드의 확산전략: 근거이론 접근법)

  • Joo, Jae-Hun;Kim, Lyun-Hwa
    • The Journal of Information Systems
    • /
    • v.22 no.1
    • /
    • pp.225-248
    • /
    • 2013
  • Korean government has been implementing a smart grid testbed in Jeju Island for the low-carbon green growth. As smart grids are in the early stage of their diffusion, strategic guidelines and related measures are needed to spread them successfully. In general, the successful diffusion of new technologies or new products are mostly determined in its early stages. With the introduction of smart grids, the electricity market paradigm will be transformed into user-oriented from provider-oriented. Thus, a study on the diffusion of smart grids from the perspective of users is necessary. This paper examines factors affecting the adoption and diffusion of smart grids from users' perspectives and provide strategic guidelines for diffusing the smart grid. Researchers conducted in-depth interviews with 41 people who have been already using smart grids in the Jeju testbed. Semi-structured interviews were used to collect data. The interviews were recorded on a digital voice recorder memory and subsequently transcribed verbatim. A total of 133 pages of transcripts were obtained from about 10 hours interviews. 97 concepts, 47 sub-categories and 19 categories were identified through open coding of grounded theory. We suggested a paradigm model for diffusing smart grids and total of seven propositions as strategic guidelines.

Computation of Viscous Flows around a Two-dimensional Oscillating Airfoil ( Part 1. without Dynamic Stall ) (진동하는 2차원 날개 단면 주위에 대한 점성 유동장 계산( Part 1. 동적실속이 없는 경우 ))

  • Lee, Pyoung-Kuk;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.1 s.151
    • /
    • pp.8-15
    • /
    • 2007
  • In this paper, numerical calculations are performed to analyze the unsteady flow of NACA airfoil sections. In order to ease the flow computation for the fluid region changing in time, improve the quality of solution and simplify the grid generation for the oscillating foil flow, the computational method adopts a moving and deforming mesh with the multi-block grid topology. The multi-block, structured-unstructured hybrid grid is generated using the commercial meshing software Gridgen V15. The MDM (Moving & Deforming Mesh) and the UDF (User Define function) function of FLUENT 6 are adopted for computing turbulent flows of the foil in pitching motion. Computed unsteady lift and drag forces are compared with experimental data. in general, the characteristics of unsteady lift and drag of the experiments are reproduced well in the numerical analysis.

CFD prediction and simulation of a pumpjet propulsor

  • Lu, Lin;Pan, Guang;Sahoo, Prasanta K.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.110-116
    • /
    • 2016
  • In this study an attempt has been made to study the hydrodynamic performance of pumpjet propulsor. Numerical investigation based on the Reynolds Averaged NaviereStokes (RANS) computational fluid dynamics (CFD) method has been carried out. The structured grid and SST ${\kappa}-{\omega}$ turbulence model have been applied. The numerical simulations of open water performance of marine propeller E779A are carried out with different advance ratios to verify the numerical simulation method. Results show that the thrust and the torque are in good agreements with experimental data. The grid independent inspection is applied to verify accuracy of numerical simulation grid. The numerical predictions of hydrodynamic performance of pumpjet propulsor are carried out with different advance ratios. Results indicate that the rotor provides the main thrust of propulsor and the balance performance of propulsor is generally satisfactory. Additionally, the curve of propulsor efficiency is in good agreement with experimental data. Furthermore, the pressure distributions around rotor and stator blades are reasonable. Beyond that, the existence of tip clearance accounts for the appearance of tip vortex that leads to a further loss in efficiency and a probability of cavitation phenomenon.

Numerical Simulation of Dam-Break Problem with Cut-cell Method (분할격자를 이용한 댐붕괴파의 수치해석)

  • Kim, Hyung-Jun;Yoo, Je-Seon;Lee, Seung-Oh;Cho, Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1752-1756
    • /
    • 2008
  • A simple, accurate and efficient mesh generation technique, the cut-cell method, is able to represent an arbitrarily complex geometry. Both structured and unstructured grid meshes are used in this method. First, the numerical domain is constructed with regular Cartesian grids as a background grid and then the solid boundaries or bodies are cut out of the background Cartesian grids. As a result, some boundary cells can be contained two numerical conditions such as the flow and solid conditions, where the special treatment is needed to simulate such physical characteristics. The HLLC approximate Riemann solver, a Godunov-type finite volume method, is employed to discretize the advection terms in the governing equations. Also, the TVD-WAF method is applied on the Cartesian cut-cell grids to stabilize numerical results. Present method is validated for the rectangular dam break problems. Initially, a conventional grid is constructed with the Cartesian regular mesh only and then applied to the dam-break flow simulation. As a comparative simulation, a cut-cell grids are applied to represent the flow domain rotated with arbitrary angles. Numerical results from this study are compared with the results from the case of the Cartesian regular mesh only. A good agreement is achieved with other numerical results presented in the literature.

  • PDF

A Simple-Structured DC Solid-State Circuit Breaker with Easy Charging Capability (충전 동작이 용이한 간단한 구조의 DC 반도체 차단기)

  • Kim, Jin-Young;Kim, In-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1575-1583
    • /
    • 2017
  • With the development of DC distribution, DC circuit breaker is required to ensure the stability of the DC grid. Unlike a mechanical circuit breaker that blocks after several tens of milliseconds, a DC SSCB(Solid-State Circuit Breaker) can break the fault well within 1 [ms], so it can prevent the damage of accident. However, the previous DC SSCB requires a lot of switching elements for charging commutation capacitors, and the control is complicated. Therefore, this paper proposes a new DC SSCB suitable for DC grid. The proposed DC SSCB is simple to control for charging commutation capacitors, and it can perform the rapid breaking and operating duty of reclosing and rebreaking. The proposed DC SSCB was designed to 380 [V] and 5 [kW] class which is suitable for residential DC distribution, and the operating characteristics of the proposed DC SSCB were verified by simulations and experiments. It is anticipated that the proposed DC SSCB may be utilized to design and realize DC grid system.

Aerodynamic Shape Optimization using Discrete Adjoint Formulation based on Overset Mesh System

  • Lee, Byung-Joon;Yim, Jin-Woo;Yi, Jun-Sok;Kim, Chong-Am
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.95-104
    • /
    • 2007
  • A new design approach of complex geometries such as wing/body configuration is arranged by using overset mesh techniques under large scale computing environment. For an in-depth study of the flow physics and highly accurate design, several special overlapped structured blocks such as collar grid, tip-cap grid, and etc. which are commonly used in refined drag prediction are adopted to consider the applicability of the present design tools to practical problems. Various pre- and post-processing techniques for overset flow analysis and sensitivity analysis are devised or implemented to resolve overset mesh techniques into the design optimization problem based on Gradient Based Optimization Method (GBOM). In the pre-processing, the convergence characteristics of the flow solver and sensitivity analysis are improved by overlap optimization method. Moreover, a new post-processing method, Spline-Boundary Intersecting Grid (S-BIG) scheme, is proposed by considering the ratio of cell area for more refined prediction of aerodynamic coefficients and efficient evaluation of their sensitivities under parallel computing environment. With respect to the sensitivity analysis, discrete adjoint formulations for overset boundary conditions are derived by a full hand-differentiation. A smooth geometric modification on the overlapped surface boundaries and evaluation of grid sensitivities can be performed by mapping from planform coordinate to the surface meshes with Hicks-Henne function. Careful design works for the drag minimization problems of a transonic wing and a wing/body configuration are performed by using the newly-developed and -applied overset mesh techniques. The results from design applications demonstrate the capability of the present design approach successfully.

A Dynamically Segmented DCT Technique for Grid Artifact Suppression in X-ray Images (X-ray 영상에서 그리드 아티팩트 개선을 위한 동적 분할 기반 DCT 기법)

  • Kim, Hyunggue;Jung, Joongeun;Lee, Jihyun;Park, Joonhyuk;Seo, Jisu;Kim, Hojoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.4
    • /
    • pp.171-178
    • /
    • 2019
  • The use of anti-scatter grids in radiographic imaging has the advantage of preventing the image distortion caused by scattered radiation. However, it carries the side effect of leaving artifacts in the X-ray image. In this paper, we propose a grid line suppression technique using discrete cosine transform(DCT). In X-ray images, the grid lines have different characteristics depending on the shape of the object and the area of the image. To solve this problem, we adopt the DCT transform based on a dynamic segmentation, and propose a filter transfer function for each individual segment. An algorithm for detecting the band of grid lines in frequency domain and a band stop filter(BSF) with a filter transfer function of a combination of Kaiser window and Butterworth filter have been proposed. To solve the blocking effects, we present a method to determine the pixel values using multiple structured images. The validity of the proposed theory has been evaluated from the experimental results using 140 X-ray images.

A Graph Model and Analysis Algorithm for cDNA Microarray Image (cDNA 마이크로어레이 이미지를 위한 그래프 모델과 분석 알고리즘)

  • Jung, Ho-Youl;Hwang, Mi-Nyeong;Yu, Young-Jung;Cho, Hwan-Gue
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.7
    • /
    • pp.411-421
    • /
    • 2002
  • In this Paper we propose a new Image analysis algorithm for microarray processing and a method to locate the position of the grid cell using the topology of the grid spots. Microarray is a device which enables a parallel experiment of 10 to 100 thousands of test genes in order to measure the gene expression. Because of the huge data obtained by a experiment automated image analysis is needed. The final output of this microarray experiment is a set of 16-bit gray level image files which consist of grid-structured spots. In this paper we propose one algorithm which located the address of spots (spot indices) using graph structure from image data and a method which determines the precise location and shape of each spot by measuring the inclination of grid structure. Several experiments are given from real data sets.

Numerical investigation of flow characteristics through simple support grids in a 1 × 3 rod bundle

  • Karaman, Umut;Kocar, Cemil;Rau, Adam;Kim, Seungjin
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1905-1915
    • /
    • 2019
  • This paper investigated the influence of simple support girds on flow, irrespective of having mixing vanes, in a 1 × 3 array rod bundle by using CFD methodology and the most accurate turbulence model which could reflect the actual physics of the flow was determined. In this context, a CFD model was created simulating the experimental studies on a single-phase flow [1] and the results were compared with the experimental data. In the first part of the study, influence of mesh was examined. Tetra, hybrid and poly type meshes were analyzed and convergence study was carried out on each in order to determine the most appropriate type and density. k - ε Standard and RSM LPS turbulence models were used in this section. In the second part of the study, the most appropriate turbulence model that could reflect the physics of the actual flow was investigated. RANS based turbulence models were examined using the mesh that was determined in the first part. Velocity and turbulence intensity results obtained on the upstream and downstream of the spacer grid at -3dh, +3dh and +40dh locations were compared with the experimental data. In the last section of the study, the behavior of flow through the spacer grid was examined and its prominent aspects were highlighted on the most appropriate turbulence model determined in the second part. Results of the study revealed the importance of mesh type. Hybrid mesh having the largest number of structured elements performed remarkably better than the other two on results. While comparisons of numerical and experimental results showed an overall agreement within all turbulence models, RSM LPS presented better results than the others. Lastly, physical appearance of the flow through spacer grids revealed that springs has more influence on flow than dimples and induces transient flow behaviors. As a result, flow through a simple support grid was examined and the most appropriate turbulence model reflecting the actual physics of the flow was determined.