• 제목/요약/키워드: structure optimization

검색결과 2,552건 처리시간 0.024초

FEA based optimization of semi-submersible floater considering buckling and yield strength

  • Jang, Beom-Seon;Kim, Jae Dong;Park, Tae-Yoon;Jeon, Sang Bae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.82-96
    • /
    • 2019
  • A semi-submersible structure has been widely used for offshore drilling and production of oil and gas. The small water plane area makes the structure very sensitive to weight increase in terms of payload and stability. Therefore, it is necessary to lighten the substructure from the early design stage. This study aims at an optimization of hull structure based on a sophisticated yield and buckling strength in accordance with classification rules. An in-house strength assessment system is developed to automate the procedure such as a generation of buckling panels, a collection of required panel information, automatic buckling and yield check and so on. The developed system enables an automatic yield and buckling strength check of all panels composing the hull structure at each iteration of the optimization. Design variables are plate thickness and stiffener section profiles. In order to overcome the difficulty of large number of design variables and the computational burden of FE analysis, various methods are proposed. The steepest descent method is selected as the optimization algorithm for an efficient search. For a reduction of the number of design variables and a direct application to practical design, the stiffener section variable is determined by selecting one from a pre-defined standard library. Plate thickness is also discretized at 0.5t interval. The number of FE analysis is reduced by using equations to analytically estimating the stress changes in gradient calculation and line search steps. As an endeavor to robust optimization, the number of design variables to be simultaneously optimized is divided by grouping the scantling variables by the plane. A sequential optimization is performed group by group. As a verification example, a central column of a semi-submersible structure is optimized and compared with a conventional optimization of all design variables at once.

가중치방법과 유전알고리즘을 이용한 금형가공센터 고속이송체의 다단계 최적설계 (Multi-step Optimization of the Moving Body for the High Speed Machinining Center using Weighted Method and G.A.)

  • 최영휴;배병태;강영진;이재윤;김태형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.23-27
    • /
    • 1997
  • This paper introduces the structural design optimization of a high speed machining center using multi-step optimization combined with G.A.(Genetic Algorithm) and Weighted Method. In this case, the design problem is to find out the best design variables which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously. Dimensional thicknesses of the thirteen structural members of the machine structure are adopted as design variables. The first step is the cross-section configuration optimization, in which the area moment of inertia of the cross-section for each structural member is maximized while its area is kept constant The second step is a static design optimization, In which the static compliance and the weight of the machine structure are minimized under some dimensional and safety constraints. The third step IS a dynamic design optimization, where the dynamic compliance and the structure weight are minimized under the same constraints. After optunization, static and dynamic compliances were reduced to 62.3% and 95.7% Eorn the initial design, while the weight of the moving bodies are also in the feaslble range.

  • PDF

Structural system reliability-based design optimization considering fatigue limit state

  • Nophi Ian D. Biton;Young-Joo Lee
    • Smart Structures and Systems
    • /
    • 제33권3호
    • /
    • pp.177-188
    • /
    • 2024
  • The fatigue-induced sequential failure of a structure having structural redundancy requires system-level analysis to account for stress redistribution. System reliability-based design optimization (SRBDO) for preventing fatigue-initiated structural failure is numerically costly owing to the inclusion of probabilistic constraints. This study incorporates the Branch-and-Bound method employing system reliability Bounds (termed the B3 method), a failure-path structural system reliability analysis approach, with a metaheuristic optimization algorithm, namely grey wolf optimization (GWO), to obtain the optimal design of structures under fatigue-induced system failure. To further improve the efficiency of this new optimization framework, an additional bounding rule is proposed in the context of SRBDO against fatigue using the B3 method. To demonstrate the proposed method, it is applied to complex problems, a multilayer Daniels system and a three-dimensional tripod jacket structure. The system failure probability of the optimal design is confirmed to be below the target threshold and verified using Monte Carlo simulation. At earlier stages of the optimization, a smaller number of limit-state function evaluation is required, which increases the efficiency. In addition, the proposed method can allocate limited materials throughout the structure optimally so that the optimally-designed structure has a relatively large number of failure paths with similar failure probability.

유전자 알고리즘을 이용한 공작기계구조물의 다단계 동적 최적화 (Multiphase Dynamic Optimization of Machine Structures Using Genetic Algorithm)

  • 이영우;성활경
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.1027-1031
    • /
    • 2000
  • In this paper, multiphase dynamic optimization of machine structure is presented. The final goal is to obtain ( i ) light weight, and ( ii ) rigidity statically and dynamically. The entire optimization process is carried out in two steps. In the first step, multiple optimization problem with two objective functions is treated using Pareto genetic algorithm. Two objective functions are weight of the structure, and static compliance. In the second step, maximum receptance is minimized using genetic algorithm. The method is applied to a simplified milling machine.

  • PDF

유용방향법 최적화 알고리즘을 사용한 고유진동수에 대한 구조 최적설계 FEA 모듈 개발 (Structure Optimization FEA Code Development Under Frequency Constraints by Using Feasible Direction Optimization Method)

  • 조희근
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.63-69
    • /
    • 2013
  • In order to find the optimum design of structures that have characteristic natural frequency range, a numerical optimization method to solving eigenvalue problems is a widely used approach. However in the most cases, it is difficult to decide the accurate thickness and shape of structures that have allowable natural frequency in design constraints. Parallel analysis algorithm involving the feasible direction optimization method and Rayleigh-Ritz eigenvalue solving method is developed. The method is implemented by using finite element method. It calculates the optimal thickness and the thickness ratio of individual elements of the 2-D plane element through a parallel algorithm method which satisfy the design constraint of natural frequency. As a result this method of optimization for natural frequency by using finite element method can determine the optimal size or its ratio of geometrically complicated shape and large scale structure.

근사 모델과 NSGA-II를 이용한 진공청소기 손잡이 근사최적설계 (Optimization of Vacuum Cleaner Handle Using Approximate Model and NSGA-II)

  • 윤민노;이종수
    • 한국생산제조학회지
    • /
    • 제26권1호
    • /
    • pp.30-35
    • /
    • 2017
  • The major parts of a vacuum cleaner are molded. The vacuum cleaner works in multi-load conditions. Therefore, the designer needs to optimize the structure and injection molding conditions simultaneously. Here, the main factor of design is the rib shape and thickness. The greater the rib thickness, the greater the stiffness of the structure. However, it causes an increase in weight. On the other hand, the lower the rib thickness, the greater the increase in the injection pressure. However, the weight will be reduced. Therefore, the designer needs to optimize the rib shape and thickness for structure stiffness and injection molding. In order to solve this problem, we propose an optimization method using D.O.E and a response surface model, which is a multi-objective optimization method using the multi-objective genetic algorithm.

Optimization of a telescope movable support structure by means of Volumetric Displacements

  • Ortega, Nestor F.;Robles, Sandra I.
    • Structural Engineering and Mechanics
    • /
    • 제31권4호
    • /
    • pp.393-405
    • /
    • 2009
  • The Purpose of this paper is to show the applicability of a methodology, developed by the authors, with which to perform the mechanical optimization of space truss structures strongly restricted. This methodology use a parameter call "Volumetric Displacement", as the Objective Function of the optimization process. This parameter considers altogether the structure weight and deformation whose effects are opposed. The Finite Element Method is employed to calculate the stress/strain state and the natural frequency of the structure through a structural linear static and natural frequency analysis. In order to show the potentially of this simple methodology, its application on a large diameter telescope structure (10 m) considering the strongly restriction that became of its use, is presented. This methodology, applied in previous works on continuous structures, such as shell roof and fluid storage vessels, is applied in this case to a space truss structure, with the purpose of generalize its applicability to different structural topology. This technique could be useful in the morphology design of deployable and retractable roof structures, whose use has extensively spread in the last years.

Topology optimization of tie-down structure for transportation of metal cask containing spent nuclear fuel

  • Jeong, Gil-Eon;Choi, Woo-Seok;Cho, Sang Soon
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2268-2276
    • /
    • 2021
  • Spent nuclear fuel, which can degrade during long-term storage, must be transported intact in normal transport conditions. In this regard, many studies, including those involving Multi-Modal Transportation Test (MMTT) campaigns, have been conducted. In order to transport the spent fuel safely, a tie-down structure for supporting and transporting a cask containing the spent fuel is essential. To ensure its structural integrity, a method for finding an optimum conceptual design for the tie-down structure is presented. An optimized transportation test model of a tie-down structure for the KORAD-21 metal cask is derived based on the proposed optimization approach, and the transportation test model is manufactured by redesigning the optimized model to enable its producibility. The topology optimization approach presented in this paper can be used to obtain optimum conceptual designs of tie-down structures developed in the future.

등가정하중을 이용한 차량 전면구조물 충돌최적설계 (Crash Optimization of an Automobile Frontal Structure Using Equivalent Static Loads)

  • 이영명;안진석;박경진
    • 한국자동차공학회논문집
    • /
    • 제23권6호
    • /
    • pp.583-590
    • /
    • 2015
  • Automobile crash optimization is nonlinear dynamic response structural optimization that uses highly nonlinear crash analysis in the time domain. The equivalent static loads (ESLs) method has been proposed to solve such problems. The ESLs are the static load sets generating the same displacement field as that of nonlinear dynamic analysis. Linear static response structural optimization is employed with the ESLs as multiple loading conditions. Nonlinear dynamic analysis and linear static structural optimization are repeated until the convergence criteria are satisfied. Nonlinear dynamic crash analysis for frontal analysis may not have boundary conditions, but boundary conditions are required in linear static response optimization. This study proposes a method to use the inertia relief method to overcome the mismatch. An optimization problem is formulated for the design of an automobile frontal structure and solved by the proposed method.

하이브리드 중간층 지진 격리 시스템과 빌딩 구조물의 동시 최적화 (Simultaneous Optimization of Hybrid Mid-Story Isolation System and Building Structure)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제19권3호
    • /
    • pp.51-59
    • /
    • 2019
  • A hybrid mid-story seismic isolation system with a smart damper has been proposed to mitigate seismic responses of tall buildings. Based on previous research, a hybrid mid-story seismic isolation system can provide effective control performance for reduction of seismic responses of tall buildings. Structural design of the hybrid mid-story seismic isolation system is generally performed after completion of structural design of a building structure. This design concept is called as an iterative design which is a general design process for structures and control devices. In the iterative design process, optimal design solution for the structure and control system is changed at each design stage. To solve this problem, the integrated optimal design method for the hybrid mid-story seismic isolation system and building structure was proposed in this study. An existing building with mid-story isolation system, i.e. Shiodome Sumitomo Building, was selected as an example structure for more realistic study. The hybrid mid-story isolation system in this study was composed of MR (magnetorheological) dampers. The stiffnessess and damping coefficients of the example building, maximum capacity of MR damper, and stiffness of isolation bearing were simultaneously optimized. Multi-objective genetic optimization method was employed for the simultaneous optimization of the example structure and the mid-story seismic isolation system. The optimization results show that the simultaneous optimization method can provide better control performance than the passive mid-story isolation system with reduction of structural materials.