• Title/Summary/Keyword: structure detection

Search Result 2,011, Processing Time 0.034 seconds

Damage Detection in Floating Structure Using Static Strain Data (정적 변형률을 이용한 플로팅 구조물의 손상탐지)

  • Park, Soo-Yong;Jeon, Yong-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.36 no.3
    • /
    • pp.163-168
    • /
    • 2012
  • Recently, people's desire for the waterfront space has been increasing, and more people want to spend their leisure time close to the water. This paper proposes a damage detection technique using the static strain for the floating structure. An existing damage index, in which the modal strain energy was utilized to identify possible location of damage, is expanded to apply the static strain. The new damage index is expressed in terms of the static strains of undamaged and damaged structures. After calculating damage index, the possible damage locations in the structure are determined by the pattern recognition technique. The accuracy and feasibility of the proposed method is demonstrated by using experimental strain data from a scale model of floating structure.

Signal Analysis of Motor Current for End Point Detection in the Chemical Mechanical Polishing of Shallow Trench Isolation with Reverse Moat Structure

  • Park, Chang-Jun;Kim, Sang-Yong;Seo, Yong-Jin
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.5
    • /
    • pp.262-267
    • /
    • 2002
  • In this paper, we first studied the factors affecting the motor current (MC) signal, which was strongly affected by the systematic hardware noises depending on polishing such as pad conditioning and arm oscillation of platen and recipe, head motor. Next, we studied the end point detection (EPD) for the chemical mechanical polishing (CMP) process of shallow trench isolation (STI) with reverse moat structure. The MC signal showed a high amplitude peak in the fore part caused by the reverse meal. pattern. We also found that the EP could not be detected properly and reproducibly due to the pad conditioning effect, especially when conventional low selectivity slurry was used. Even when there was no pad conditioning effect, the EPD method could not be applied, since the measured end points were always the same due to the characteristics of the reverse moat structure with an open nitride layer.

A Verification of the Accuracy of the Deformable Model in 3 Dimensional Vessel Surface Reconstruction (혈관표면의 3차원 재구성을 위한 Deformable model의 정확성 검증에 관한 연구)

  • Kim, H.C.;Oh, J.S.;Kim, H.R.;Cho, S.B.;Sun, K.;Kim, M.G.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.3-5
    • /
    • 2005
  • Vessel boundary detection and modeling is a difficult but a necessary task in analyzing the mechanics of inflammation and the structure of the microvasculature. In this paper we present a method of analyzing the structure by means of an active contour model(using GVF Snake) for vessel boundary detection and 3D reconstruction. For this purpose we used a virtual vessel model and produced a phantom model. From these phantom images we obtained the contours of the vessel by GVF Snake and then reconstructed a 3D structure by using the coordinates of snakes.

  • PDF

An Efficient String Matching Algorithm Using Bidirectional and Parallel Processing Structure for Intrusion Detection System

  • Chang, Gwo-Ching;Lin, Yue-Der
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.5
    • /
    • pp.956-967
    • /
    • 2010
  • Rapid growth of internet applications has increased the importance of intrusion detection system (IDS) performance. String matching is the most computation-consuming task in IDS. In this paper, a new algorithm for multiple string matching is proposed. This proposed algorithm is based on the canonical Aho-Corasick algorithm and it utilizes a bidirectional and parallel processing structure to accelerate the matching speed. The proposed string matching algorithm was implemented and patched into Snort for experimental evaluation. Comparing with the canonical Aho-Corasick algorithm, the proposed algorithm has gained much improvement on the matching speed, especially in detecting multiple keywords within a long input text string.

Low-power Heartbeat Detection Algorithm and Structure Using Modified CIC Filter Banks (Modified CIC 필터뱅크를 이용한 저전력 심장박동수 측정 알고리즘 및 구조)

  • Oh, Seung-Lee;Jang, Young-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.264-269
    • /
    • 2013
  • In this paper, low-power heart beat detection algorithm and structure is proposed. The proposed detection algorithm utilizes filter banks to display a specific beat per minute(BPM) from the heart beat signals. Since general filter banks need a lot of computation to calculate a BPM, we propose the filter banks structure using modified CIC(Cascaded Integrator Comb) filters. It is shown that the proposed modified CIC filter banks algorithm can display the BPM from the heart beat signals precisely and efficiently.

Vibration-based damage detection in wind turbine towers using artificial neural networks

  • Nguyen, Cong-Uy;Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.4
    • /
    • pp.507-519
    • /
    • 2018
  • In this paper, damage assessment in wind-turbine towers using vibration-based artificial neural networks (ANNs) is numerically investigated. At first, a vibration-based ANNs algorithm is designed for damage detection in a wind turbine tower. The ANNs architecture consists of an input, an output, and hidden layers. Modal parameters of the wind turbine tower such as mode shapes and frequencies are utilized as the input and the output layer composes of element stiffness indices. Next, the finite element model of a real wind-turbine tower is established as the test structure. The natural frequencies and mode shapes of the test structure are computed under various damage cases of single and multiple damages to generate training patterns. Finally, the ANNs are trained using the generated training patterns and employed to detect damaged elements and severities in the test structure.

LDO Regulator with Improved Load Regulation Characteristics and Feedback Detection Structure (피드백 감지 회로 구조로 인한 향상된 Load Regulation 특성을 가진 LDO 레귤레이터)

  • Jung, Jun-Mo
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1162-1166
    • /
    • 2020
  • In this paper Low Drop-Out (LDO) regulator that improved load regulation characteristics due to the feedback detection structure. The proposed feedback sensing circuit is added between the output of the LDO's internal error amplifier and the input of the pass transistor to improve the regulation of the delta value coming into the output. It has a voltage value with improved load regulation characteristics than existing LDO regulator. The proposed LDO structure was analyzed in Samsung 0.13um process using Cadence's Virtuoso, Spectre simulator.

Steam Leak Detection Method in a Pipeline Using Histogram Analysis (히스토그램 분석을 이용한 배관 증기누설 검출 방법)

  • Kim, Se-Oh;Jeon, Hyeong-Seop;Son, Ki-Sung;Chae, Gyung-Sun;Park, Jong Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.307-313
    • /
    • 2015
  • Leak detection in a pipeline usually involves acoustic emission sensors such as contact type sensors. These contact type sensors pose difficulties for installation and cannot operate in areas having high temperature and radiation. Therefore, recently, many researchers have studied the leak detection phenomenon by using a camera. Leak detection by using a camera has the advantages of long distance monitoring and wide area surveillance. However, the conventional leak detection method by using difference images often mistakes the vibration of a structure for a leak. In this paper, we propose a method for steam leakage detection by using the moving average of difference images and histogram analysis. The proposed method can separate the leakage and the vibration of a structure. The working performance of the proposed method is verified by comparing with experimental results.

GPU-Based Parallel Collision Detection for Deformable Objects (변형 물체를 위한 GPU 기반 병렬 충돌 감지)

  • Sung, Nak-Jun;Kim, Min Sang;Hong, Min;Choi, Yoo-Joo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.1
    • /
    • pp.25-32
    • /
    • 2018
  • Due to heavy computational cost, deformable object simulation requires more effective collision detection method than rigid body simulation. However, when the CPU-based collision detection algorithm is purely applied to the GPU environment, the collision detection algorithm and the data structure optimized for the GPU environment are essential because the performance of the GPU can not be used properly. Therefore, we propose a GPU-based parallel collision detection algorithm for mass-spring system which is widely used for deformable object representation in this paper. The proposed method uses a parallel algorithm and data structure to reduce collision detection cost through GPU-based curling algorithm using AABB-Octree structure. In this paper, we prove the effectiveness of the proposed method by comparing the intersection test of all triangle pairs in parallel. The results of experimental tests show that the proposed method improves the performance by about 24% on average. Therefore, it is expected that the proposed method can improve the performance of real-time simulation for deformable objects.

State detection of explosive welding structure by dual-tree complex wavelet transform based permutation entropy

  • Si, Yue;Zhang, ZhouSuo;Cheng, Wei;Yuan, FeiChen
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.569-583
    • /
    • 2015
  • Recent years, explosive welding structures have been widely used in many engineering fields. The bonding state detection of explosive welding structures is significant to prevent unscheduled failures and even catastrophic accidents. However, this task still faces challenges due to the complexity of the bonding interface. In this paper, a new method called dual-tree complex wavelet transform based permutation entropy (DTCWT-PE) is proposed to detect bonding state of such structures. Benefiting from the complex analytical wavelet function, the dual-tree complex wavelet transform (DTCWT) has better shift invariance and reduced spectral aliasing compared with the traditional wavelet transform. All those characters are good for characterizing the vibration response signals. Furthermore, as a statistical measure, permutation entropy (PE) quantifies the complexity of non-stationary signals through phase space reconstruction, and thus it can be used as a viable tool to detect the change of bonding state. In order to more accurate identification and detection of bonding state, PE values derived from DTCWT coefficients are proposed to extract the state information from the vibration response signal of explosive welding structure, and then the extracted PE values serve as input vectors of support vector machine (SVM) to identify the bonding state of the structure. The experiments on bonding state detection of explosive welding pipes are presented to illustrate the feasibility and effectiveness of the proposed method.