• Title/Summary/Keyword: structural wood member

검색결과 33건 처리시간 0.562초

Longitudinal Bonding Strength Performance Evaluation of Larch Lumber (낙엽송 소경각재의 종접합 성능평가)

  • Lee, In-Hwan;Pack, Ju-hyun;Song, Da-bin;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • 제46권1호
    • /
    • pp.85-92
    • /
    • 2018
  • In order to use glued built up timber beam as a structural member for post and beam construction, it must be possible to manufacture long-span lumber. In this study, the researchers conducted a performance evaluation for longitudinal bonding of lumber (cross-section $89{\times}120mm$) made from larch. The specimens were prepared in six different forms using the longitudinal bonding method. The bonding strength of these specimens was tested through tensile strength tests and bending strength tests. The tensile strength test result of the longitudinally bonded parts was better than that of the double lap specimens. And, the tensile strength value of the scarf specimen was better than that of the hooked scarf specimen. The tensile strength of the GFRP (Glass Fiber Reinforced Plastic) rod insertion bonding specimen was 3.6 MPa, which was the highest. As for the bending strength test result of the longitudinally bonded part, the average MOR (modulus of rupture) of the specimen where a GFRP rod was inserted and bonded measured 29 MPa, while the specimens of other bonded parts showed a MOR no more than 11 MPa. Toughness destruction was observed in specimens where a GFRP rod was insertion-bonded. The rest of the specimens showed brittle destruction. The average MOR strength of the Rod + Lap specimen was 30.5 MPa, which was the highest among all longitudinally bonded specimens. The bending strength of the Rod + Lap specimens showed an effective strength that was 66% of that of the control group which were not longitudinally bonded.

Assessment on Thermal Transmission Property of Wall Through a Scaled Model Test (축소모형 실험을 통한 벽체의 열관류 측정)

  • Chang, Yoon-Seong;Kim, Sejong;Shim, Kug-Bo;Lee, Sang-Joon;Han, Yeonjung;Park, Yonggun;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권6호
    • /
    • pp.884-889
    • /
    • 2015
  • Appropriate evaluation of thermal insulation property of structural member and valid control of cooling/heating energy are important for improving building's energy efficiency. The typical heating system of house in Korea is the floor heating one. The radiation heating system is not only appropriate to climate and geographic conditions of Korea, but also advantageous to provide emotional comfort by the warm feeling of floor. Based on living conditions in Korea, scaled models of the wooden house and concrete house were designed. The ceiling was made of styrofoam insulation and the four sided walls and bottom were made of plywood and concrete, respectively. The floor was heated by heating film. Indoor vertical temperature distributions by floor heating system were measured by thermocouple, and surface temperatures on walls were measured by infrared thermography. Also, thermal insulation property of wooden wall was evaluated to build database for improving energy efficiency of wooden building. It is expected that collected data during tests of various types of floor and wall composition could be referenced for evaluating thermal environment of actual conditions of houses.

Consideration on how to build on AndongJotap-ri five-story brick pagoda using the building methodology of a stone pagoda between the 7th~9th century (7~9세기 석탑조영방법을 통해 본 안동 조탑리 오층전탑의 조영방법 고찰)

  • Kim, Sang-Gu;Lee, Jeong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제16권1호
    • /
    • pp.744-754
    • /
    • 2015
  • Buddhist temple construction at East Asia is considered one of the most important architecture activities together with the capital city and palace, where the pagoda is positioned at the center of a Buddhist temple as the most important element of Buddhist architecture enshrining Buddha's Sary. Accordingly, this study was performed to examine the procedure of how to build brick pagodas through the stone pagoda's internal structure between $7^{th}{\sim}9^{th}$ century while disassembling and repairing Andong Jotap-ri five-story brick pagoda. As a result, as the brick pagoda destruction phenomenon, there was a slip phenomenon by side forces, member's plastic temperature, and mixed material differences. Second, like a stone pagoda, brick pagoda is classified and constructed by the design and structural parts. According to the analysis, the design part is formed by the most edge brick, and the structure part places stone material at the buffer zone in the design brick from most edge brick and intra-center, i.e., at the space to support a side force while the top weight is vertically led. When building a brick pagoda, putting a wood pole at inside center plays the role as holding parts. In addition, the center axis is connected to the bottom of the steel pole hole, A steel pole hole has holes to safely settle down and decide the position. Because of them, the steel pole is self-loaded, which may be installed by wood rather than immovable steel.