• Title/Summary/Keyword: structural wood

Search Result 366, Processing Time 0.025 seconds

Structural Safety Evaluation of Yangjindang in Sang-ju Using Vibration Characteristics (동적 특성을 고려한 상주 양진당의 구조 안전성 평가)

  • Lee, Ga-Yoon;Lee, Sung-Min;Kim, Si-Yun;Lee, Kihak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.1
    • /
    • pp.37-44
    • /
    • 2019
  • Yangjindang house, which is located in Sang-ju province of South Korea, is one of the special Hanok structures dated back to Joseon dynasty. This study aims to examine structural safety of the Yangjindang wood frame building considering dynamic parameters such as the natural frequency and damping ratio. The numerical model of the wood frame building is implemented using Midas Gen, especially the wood joint where column and beam were connected. The behavior of the actual frame building was compared with the modeling results. In addition, structure responses such as shear force, axial force, flexural moment and deflections were calculated and compared with the allowable limits. Numerical results show that, generally, despite of some local members shear failure, Yangjindang's structural response does not exceed the limitation according to current standards.

Performance of Structural Glulam Manufactured with Fire Retardants Treated Lumbers (난연처리 제재목으로 제조한 구조용 집성재의 강도 성능평가)

  • Son, Dong-Won;Eom, Chang-Deuk;Park, Jun-Cheol;Park, Joo-Saeng
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.477-482
    • /
    • 2014
  • Consumer demand for wood use has diversified recently. Laminated wood has been used for large-scale buildings and public buildings, not only the durability but also the demand for fire safety has increased. In this study. it was performed for the purpose of developing a standard and flame-retardant treatment technology suitable for structural laminated wood, which was prepared in domestic larch. In this study, by using the domestic larch and Korean pine lumber which treated with flame-retardants, to manufacture the glulam, the effect of strength properties were investigated. In the case of fire retardant treated larch Glulam was satisfactory conditions of the strength of structural laminated wood, but had to be improved, such as the occurrence of delamination and decrease strength by the flame retardant treatment. Development of application-type flame retardant treatment technology or injection-type flame retardant treatment after production of laminated lumber were required.

Flame Resistance and Durability of Compressed Structural Wood through Microwave Heat Drying Method (마이크로파 가열건조법에 의한 압축 구조용 목재의 방염 및 내구성)

  • Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.2
    • /
    • pp.162-170
    • /
    • 2011
  • As the result of implementing a treated material test and durability test after quickly drying S.P.F. species, a type of softwood structural material, within a short period time, soaking it in liquid phosphate flame proof agent for an hour, microwave heating it, and compressing it from 3.8cm to 1cm, when setting the appropriate heating time of microwave heating at 7 minutes at 5kW, it is observed that it satisfies the target water content (4~5%). It is shown that in a water content measurement of the wood that is compressed after being softened by soaking in the flame proof agent, drying and heating at 3kW for 9 minutes, all specimens satisfied 12~14%, the appropriate water content for exterior wood. Also, it is shown that in terms of the flame performance obtained through a flame resistance treatment of the compressed wood and a treated material test, the specimen soaked in flame proof agent for 30 minutes was the most excellent, and that the performance test result of the compressed wood in all areas, such as nail withdrawal resistance, compression, bending strength, and shearing strength, were all improved in their mechanical features to twice to three times better performances.

Studies on the Poplar Deltoides Lignin Preparation and Effects on Its Structure Modifications

  • Naithani Ved P.;Madan R.N.
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.257-263
    • /
    • 2006
  • This paper examines the physico-chemical properties and structural features of thio lignin and alcohol lignin preparations extracted from fast-growing poplar wood. The lignin preparations were characterized using UV, IR and alkaline nitrobenzene oxidation methods. The yield was higher in thiolignin due to its preparation from wood under drastic alkaline conditions and almost the total amount of alkaline degraded lignin was precipitated except acid soluble lignin. In case of ethanol lignin, structural modifications were comparatively less and form a cream colored lignin more or less similar to its original natural color. The methoxyl values were higher due to syringyl unit present in hard wood lignin in addition to guaicyl unit present in soft wood. The higher values of methoxyl content of isolated lignin revealed that it was built up of high syringyl units. The elementary analysis, methoxyl group and hydroxyl groups were presented by $C_{9}$ formula indicated that it was made up of phenyl propane monomers. Nitrobenzene oxidation of thio lignin and ethanol lignin yield more or less the chromatograms of similar pattern, except difference in relative percentage. The ultra violet spectra of lignins were quite similar, irrespective of the source and method of isolation. Infrared spectroscopy studies of poplar deltoides, thio and ethanol lignin shown different absorption bands which have been utilized for structural investigations.

  • PDF

Changes in Cellular Characteristics and Qualities of Matured and Juvenile Wood from Reforested Tree of Pinus koraiensis (잣나무 조림목(造林木)의 조직특성(組織特性)의 변동(變動)과 성열재(成熱材)·미성열재(未成熱材)의 재질(材質))

  • Kang, Sun-Koo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.73-80
    • /
    • 1993
  • Pinus koraiensis is one of the most important reforestation species which had widely been planted around the country. Therefore, there are great research needs on the fundamental properties of wood to extend the frequency of uses and adequate availabilities. Research results on the characteristics of anatomical wood properties and changes are summarized as follows: 1. At a horizontal direction of tree trunk, the tracheid length at outer wood gradually becomes shorter as it reaches to pith. The tracheid length having between 32 and 42 annual rings showed over 2.5 times longer than that of pith, and also its length increases from the bottom to the top of the stem. 2. The tracheid diameters in latewood showed a little fluctuations, and the shortest near to the pith in earlywood. The tracheid diameters in earlywood are more than 2 times those of latewood, and the differences between the mature and juvenile wood in earlywood are less than 10${\mu}m$. 3. The tracheid wall thickness in early wood showed a little fluctuations. On the contrary, tracheid wall thickness in latewood rapidly increases from the pith to the bark. The tracheid wall of mature wood showed 10 to 20% thicker than that of juvenile wood. 4. The fibril angle at the secondary walls of tracheid within an annual ring showed higher degree in earlywood than that of latewood. The highest tracheid fibril angle was observed at around the pith of both earlywood and latewood. Then, fibril angle slowly decreased toward outer wood, and was stabilized after 15 years. 5. Structural boundaries between mature and juvenile wood from Pinus koraiensis are divided by 13 to 19 annual ring and distance of 5 to 8cm from the pith.

  • PDF

Determination of Ratio of Wood Deterioration Using NDT Technique

  • Lee, Jun-Jae;Bae, Mun-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.33-41
    • /
    • 2004
  • In ancient wooden structures, the mechanical properties of the structural members have been reduced by time-dependent degradations such as fatigue or creep. Also, the external and internal deterioration was caused by environmental condition, fungi, bacteria, or insect, and then reduced the quality of structural members. However, the previous methods for evaluating the deterioration have been mainly depended on the visual inspection. In this study, therefore, ultrasonic stress wave test, accelerometer stress wave test were used to evaluate the deterioration of structural wood members in ancient wooden structures. Based on the results, the quantitative criteria of stress wave transmitted velocity were proposed to evaluate the deterioration of structural member. The proposed criteria were related to the degree of deterioration. In accelerometer stress wave, the criteria of deterioration of wave reciprocal velocity was below 1800 ㎲/m at incipient deterioration (below 12% ratio of deterioration), between 1800 and 2200 ㎲/m at moderate deterioration (12~17%) and above 2200 ㎲/m at severe deterioration (above 17%). The ultrasonic stress wave, the criteria of deterioration were 800 and 950 ㎲/m at below 8% and above 15% of the degree of deterioration respectively.

Furfurylation Effects on Discoloration and Physical-Mechanical Properties of Wood from Tropical Plantation Forests

  • HADI, Yusuf Sudo;HERLIYANA, Elis Nina;PARI, Gustan;PARI, Rohmah;ABDILLAH, Imam Busyra
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.1
    • /
    • pp.46-58
    • /
    • 2022
  • Wood from tropical plantation forests has lower physical and mechanical properties than mature wood. Furfuryl alcohol (FA) impregnation into the wood could help to enhance hydrophobic properties, dimensional stability, and structural strength. Furfurylation was applied to specimens of the following four fast-growing tropical wood species: jabon (Anthocephalus cadamba), sengon (Falcataria moluccana), mangium (Acacia mangium), and pine (Pinus merkusii). The discoloration and physical and mechanical properties were subsequently measured, and the results showed that furfurylated wood had a darker color and better physical and mechanical properties than untreated wood. Specifically, the furfurylated wood had higher density, modulus of elasticity, and hardness and lower moisture content, water absorption, swelling, and shrinkage. The furfurylation significantly enhanced physical and mechanical properties.

Effect of Cross-Sectional Dimension on the Shrinkage Property of Korean Red-Pine Wood (소나무재의 단면치수에 따른 수축률 특성)

  • Hwang, Kweonhwan;Park, Beyung-Su
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.231-238
    • /
    • 2009
  • Red pine (Pinus densiflora) has been used for structural wood members of Korean traditional residence (HANOK) and historic wooden structures. For these constructions, generally, natural drying has conducted for long time; however, unless drying is conducted sufficiently, it could cause several drying defects such as check or warping. Shrinkage changes of red pine species for small clear specimens and big-size specimens according to the conditions of moisture contents, were examined. For the estimation of volumetric shrinkage at a special moisture content, it was more precise to divide the range of moisture contents into two groups, green to air-dry and air-dry to oven-dry. The volumetric shrinkage had no difference with specimen sizes in sapwood, but decreased as specimen size increased in heartwood.

Seismic fragility analysis of wood frame building in hilly region

  • Ghosh, Swarup;Chakraborty, Subrata
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.97-107
    • /
    • 2021
  • A comprehensive study on seismic performance of wood frame building in hilly regions is presented. Specifically, seismic fragility assessment of a typical wood frame building at various locations of the northeast region of India are demonstrated. A three-dimensional simplified model of the wood frame building is developed with due consideration to nonlinear behaviour of shear walls under lateral loads. In doing so, a trilinear model having improved capability to capture the force-deformation behaviour of shear walls including the strength degradation at higher deformations is proposed. The improved capability of the proposed model to capture the force-deformation behaviour of shear wall is validated by comparing with the existing experimental results. The structural demand values are obtained from nonlinear time history analysis (NLTHA) of the three-dimensional wood frame model considering the effect of uncertainty due to record to record variation of ground motions and structural parameters as well. The ground motion bins necessary for NLTHA are prepared based on the identified hazard level from probabilistic seismic hazard analysis of the considered locations. The maximum likelihood estimates of the lognormal fragility parameters are obtained from the observed failure cases and the seismic fragilities corresponding to different locations are estimated accordingly. The results of the numerical study show that the wood frame constructions commonly found in the region are likely to suffer minor cracking or damage in the shear walls under the earthquake occurrence corresponding to the estimated seismic hazard level; however, poses negligible risk against complete collapse of such structures.

A study on the Bending Property of Structural Size Skin-Timber (대단면 스킨팀버의 휨 성질에 관한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.26-37
    • /
    • 2012
  • Recently, the demand and supply on the Hanok have been increased. However, Hanok should be requested larger section of structural members because of excessive roof weight. So, structural skin-timber was manufactured to get a lightweight structural member. The structural skin-timber has exterior shape with larger section but a great volume of wood be removed. The reduced strength of structural skin-timber can be supplemented by hybridizaion of structural member. Japanese larch and Domestic pine were used to manufacture the structural skin-timber. Structural skin-timbers of rectangular shape and cylinder shape were manufactured and tested to evaluate the bending properties. The intended strength property could not be obtained because member had been suffered severe damage by precision deficiency of manufacturing machine. However, if precision of manufacturing machine would be improved and additional hybridizaion of structural skin-timber would be done, lightweight structural member will be able to be manufactured. Structural skin-timber did not showed statistical significancy between two species, so it is possible to use pine mixed with larch. Only MOR of larch showed statistical significancy between rectangular shape and cylinder shape, so it is necessary to use of those as separate things. However, the rest of skin-timber can be judged mixed using because of non statistical significancy. The objective of this study was the development of lightweight larger structural member with relatively strength. If hybrid member of skin-timber could be developed with wood-ceramics, lightweight steel and more, it can be possible to be used as a building material of Hanok, interior material, post & beam construction material and more.