• 제목/요약/키워드: structural system reliability

검색결과 569건 처리시간 0.026초

Finite element fracture reliability of stochastic structures

  • Lee, J.C.;Ang, A.H.S.
    • Structural Engineering and Mechanics
    • /
    • 제3권1호
    • /
    • pp.1-10
    • /
    • 1995
  • This study presents a methodology for the system reliability analysis of cracked structures with random material properties, which are modeled as random fields, and crack geometry under random static loads. The finite element method provides the computational framework to obtain the stress intensity solutions, and the first-order reliability method provides the basis for modeling and analysis of uncertainties. The ultimate structural system reliability is effectively evaluated by the stable configuration approach. Numerical examples are given for the case of random fracture toughness and load.

Lagrange Multipliers에 의한 슬래브시스템의 신뢰성 최적설계 (Reliability Optimum Design of Slab System based on Lagrange Multipliers)

  • 김현석;이증빈;정철원
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제1권1호
    • /
    • pp.113-124
    • /
    • 1997
  • Based on the recent developments of the reliability-based structural analysis and design as well as the extending knowledge on the probabilistic characteristics of load and resistances, the probability based design criteria have been successfully developed for many standards. Since the probabilistic characteristics depend highly on the local load and resistances, it is recognized to develop the design criterion compatible with domestic requirements. The existing optimum design methods, which are generally based on the structural theory and certain engineering exprience, do not realistically consider the uncertainties of load and resistances and the basic reliability concepts. This study is directed to propose a optimum design based Expected Total Cost Minimization on two-way slab system which could possibly replace optimum design based traditional provisions of the current code, based on the AFOSM reliablity theory.

  • PDF

Smart pattern recognition of structural systems

  • Hassan, Maguid H.M.
    • Smart Structures and Systems
    • /
    • 제6권1호
    • /
    • pp.39-56
    • /
    • 2010
  • Structural Control relies, with a great deal, on the ability of the control algorithm to identify the current state of the system, at any given point in time. When such algorithms are designed to perform in a smart manner, several smart technologies/devices are called upon to perform tasks that involve pattern recognition and control. Smart pattern recognition is proposed to replace/enhance traditional state identification techniques, which require the extensive manipulation of intricate mathematical equations. Smart pattern recognition techniques attempt to emulate the behavior of the human brain when performing abstract pattern identification. Since these techniques are largely heuristic in nature, it is reasonable to ensure their reliability under real life situations. In this paper, a neural network pattern recognition scheme is explored. The pattern identification of three structural systems is considered. The first is a single bay three-story frame. Both the second and the third models are variations on benchmark problems, previously published for control strategy evaluation purposes. A Neural Network was developed and trained to identify the deformed shape of structural systems under earthquake excitation. The network was trained, for each individual model system, then tested under the effect of a different set of earthquake records. The proposed smart pattern identification scheme is considered an integral component of a Smart Structural System. The Reliability assessment of such component represents an important stage in the evaluation of an overall reliability measure of Smart Structural Systems. Several studies are currently underway aiming at the identification of a reliability measure for such smart pattern recognition technique.

체계신뢰성 평가와 비교한 응답면기법에 의한 교량시스템의 위험성평가 (Risk Assessment for a Bridge System Based upon Response Surface Method Compared with System Reliability)

  • 조태준;문제우;김종태
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.295-300
    • /
    • 2007
  • Probabilistic Risk Assessment considering statistically random variables is performed for the preliminary design of a Arch Bridge. Component reliabilities of girders have been evaluated using the response surfaces of the design variables at the selected critical sections based on the maximum shear and negative moment locations. Response Surface Method (RSM) is successfully applied for reliability analyses for this relatively small probability of failure of the complex structure, which is hard to be obtained by Monte-Carlo Simulations or by First Order Second Moment Method that can not easily calculate the derivative terms of implicit limit state functions. For the analysis of system reliability, parallel resistance system composed of girders is changed into parallel series connection system. The upper and lower probabilities of failure for the structural system have been evaluated and compared with the suggested prediction method for the combination of failure modes. The suggested prediction method for the combination of failure modes reveals the unexpected combinations of element failures in significant]y reduced time and efforts compared with the previous permutation method or system reliability analysis method.

  • PDF

수동형 댐퍼를 장착한 구조물의 동적응답기반 신뢰성 해석 - 제1편: 부재별 파괴확률 산정 (Dynamic Response based Reliability Analysis of Structure with Passive Damper - Part 1: Assessment of Member Failure Probability)

  • 김승민;옥승용
    • 한국안전학회지
    • /
    • 제31권4호
    • /
    • pp.90-96
    • /
    • 2016
  • This study proposes a dynamic reliability analysis of control system as a method of quantitative evaluation of its performance in probabilistic terms. In this dynamic reliability analysis, the failure event is defined as an event that the dynamic response of the structural system exceeds a displacement limit, whereas the conventional reliability analysis method has limitations that do not properly assess the actual time history response of the structure subjected to dynamic loads, such as earthquakes and high winds, by taking the static response into account in the failure event. In this first paper, we discuss the control effect of the viscous damper on the seismic performance of the member-level failure where the failure event of the structural member consists of the union set of time-sequential member failures during the earthquake excitations and the failure probability of the earthquake-excited structural member is computed using system reliability approach to consider the statistical dependence of member failures between the subsequent time points. Numerical results demonstrate that the proposed approach can present a reliable assessment of the control performance of the viscous damper system in comparison with MCS method. The most important advantage of the proposed approach can provide us more accurate estimate of failure probability of the structural control system by using the actual time-history responses obtained by dynamic response analysis.

확률 기반 설계법을 위한 코드 변환과 시스템 신뢰도에 대한 고찰 (The study on the system reliability and code conversion for the probability based design)

  • 김광철
    • 한국가구학회지
    • /
    • 제20권5호
    • /
    • pp.440-456
    • /
    • 2009
  • Because PBD was started as a design tool for steel construction and concrete construction, it was able to applied to the post and beam method of wooden building constructions. But, it may not suitable to light frame wooden construction that is becoming popular in domestic construction market due to the economical efficiency and the constructive simplification. Owing to the share effects between member and sheathing material or among structural members, light frame wooden construction is different from post and beam construction that use a single structural member. Therefore, consideration on the system analysis and system design are urgently needed to use in actual life and inspect the reliability of structures from the system view. With this in mind, code conversion from ASD to PBD that is pressing issue in domestic wooden building construction was studied, also various countries status about PBD were considered and then approaching methods on the system reliability were referred. Finally, several considerations for the development of PBD were explored. PBD should be considered as, not only a new structural design process that select sizes of structural member, but a industrial tool that can lead a development of more reliable wood products. A strongest point of PBD is independent of various construction materials and construction types.

  • PDF

System RBDO of truss structures considering interval distribution parameters

  • Zaeimi, Mohammad;Ghoddosian, Ali
    • Structural Engineering and Mechanics
    • /
    • 제70권1호
    • /
    • pp.81-96
    • /
    • 2019
  • In this paper, a hybrid uncertain model is applied to system reliability based design optimization (RBDO) of trusses. All random variables are described by random distributions but some key distribution parameters of them which lack information are defined by variation intervals. For system RBDO of trusses, the first order reliability method, as well as monotonicity analysis and the branch and bound method, are utilized to determine the system failure probability; and Improved (${\mu}+{\lambda}$) constrained differential evolution (ICDE) is employed for the optimization process. System reliability assessment of several numerical examples and system RBDO of different truss structures are proposed to verify our results. Moreover, the effect of different classes of interval distribution parameters on the optimum weight of the structure and the reliability index are also investigated. The results indicate that the weight of the structure is increased by increasing the uncertainty level. Moreover, it is shown that for a certain random variable, the optimum weight is more increased by the translation interval parameters than the rotation ones.

A New Methodology for the Rapid Calculation of System Reliability of Complex Structures

  • Park, Sooyong
    • Architectural research
    • /
    • 제3권1호
    • /
    • pp.71-80
    • /
    • 2001
  • It is quite difficult to calculate the collapse probability of a system such as statically indeterminate structure that has many possible modes or paths to complete failure and the problem has remained essentially unsolved. A structure is synthesized by several components or elements and its capacity to resist the given loads is a function of the capacity of the individual element. Thus it is reasonable to assess the probability of failure of the system based upon those of its elements. This paper proposes an efficient technique to directly assess the reliability of a complex structural system from the reliabilities of its components or elements. The theory for the calculation of the probability of a structural system is presented. The target requirements of the method and the fundamental assumptions governing the method are clearly stated. A portal frame and two trusses are selected to demonstrate the efficiency of the method by comparing the results obtained from the proposed method to those from the existing methods in the literature.

  • PDF

손상평가와 구조물 신뢰성과의 연계 (Linkage of Damage Evaluation to Structural System Reliability)

  • 박수용
    • 한국강구조학회 논문집
    • /
    • 제15권1호
    • /
    • pp.41-50
    • /
    • 2003
  • 구조물에 대한 비파괴 손상평가는 손상 전과 손상 후의 동적 특성으로부터 손상의 위치와 그 크기에 대한 정보를 제공한다. 기존 구조물의 시스템 신뢰도를 추정하기 위해서는 이러한 비파괴 손상평가의 결과가 부재요소의 파괴확률에 반영되어야 한다. 구조 부재의 파괴확률은 각 부재의 파괴함수로부터 신뢰성 이론을 이용하여 구할 수 있다. 본 논문에서는 각 부재의 파괴확률로부터 직접 구조 시스템의 파괴확률을 구할 수 있는 식을 제안하였다. 손상평가와 신뢰성평가 분야의 연계는 철골조 단층 프레임의 수치해석 모델에 인위적인 손상을 가하여 손상 전과 손상 후의 모달 변수를 이용하여 그 타당성을 입증하였다.

Seismic reliability analysis of structures based on cumulative damage failure mechanism

  • Liu, Qiang;Wang, Miaofang
    • Earthquakes and Structures
    • /
    • 제18권4호
    • /
    • pp.519-526
    • /
    • 2020
  • Non-stationary random seismic response and reliability of multi-degree of freedom hysteretic structure system are studied based on the cumulative damage failure mechanism. First, dynamic Eqs. of multi-degree of freedom hysteretic structure system under earthquake action are established. Secondly, the random seismic response of a multi-degree freedom hysteretic structure system is investigated by the combination of virtual excitation and precise integration. Finally, according to the damage state level of structural, the different damage state probability of high-rise frame structure is calculated based on the boundary value of the cumulative damage index in the seismic intensity earthquake area. The results show that under the same earthquake intensity and the same floor quality and stiffness, the lower the floor is, the greater the damage probability of the building structure is; if the structural floor stiffness changes abruptly, the weak layer will be formed, and the cumulative damage probability will be the largest, and the reliability index will be relatively small. Meanwhile, with the increase of fortification intensity, the reliability of three-level structure fortification is also significantly reduced. This method can solve the problem of non-stationary random seismic response and reliability of high-rise buildings, and it has high efficiency and practicability. It is instructive for structural performance design and estimating the age of the structure.