• Title/Summary/Keyword: structural system identification

검색결과 510건 처리시간 0.031초

System identification of a building structure using wireless MEMS and PZT sensors

  • Kim, Hongjin;Kim, Whajung;Kim, Boung-Yong;Hwang, Jae-Seung
    • Structural Engineering and Mechanics
    • /
    • 제30권2호
    • /
    • pp.191-209
    • /
    • 2008
  • A structural monitoring system based on cheap and wireless monitoring system is investigated in this paper. Due to low-cost and low power consumption, micro-electro-mechanical system (MEMS) is suitable for wireless monitoring and the use of MEMS and wireless communication can reduce system cost and simplify the installation for structural health monitoring. For system identification using wireless MEMS, a finite element (FE) model updating method through correlation with the initial analytical model of the structure to the measured one is used. The system identification using wireless MEMS is evaluated experimentally using a three storey frame model. Identification results are compared to ones using data measured from traditional accelerometers and results indicate that the system identification using wireless MEMS estimates system parameters with reasonable accuracy. Another smart sensor considered in this paper for structural health monitoring is Lead Zirconate Titanate (PZT) which is a type of piezoelectric material. PZT patches have been applied for the health monitoring of structures owing to their simultaneous sensing/actuating capability. In this paper, the system identification for building structures by using PZT patches functioning as sensor only is presented. The FE model updating method is applied with the experimental data obtained using PZT patches, and the results are compared to ones obtained using wireless MEMS system. Results indicate that sensing by PZT patches yields reliable system identification results even though limited information is available.

A two-stage and two-step algorithm for the identification of structural damage and unknown excitations: numerical and experimental studies

  • Lei, Ying;Chen, Feng;Zhou, Huan
    • Smart Structures and Systems
    • /
    • 제15권1호
    • /
    • pp.57-80
    • /
    • 2015
  • Extended Kalman Filter (EKF) has been widely used for structural identification and damage detection. However, conventional EKF approaches require that external excitations are measured. Also, in the conventional EKF, unknown structural parameters are included as an augmented vector in forming the extended state vector. Hence the sizes of extended state vector and state equation are quite large, which suffers from not only large computational effort but also convergence problem for the identification of a large number of unknown parameters. Moreover, such approaches are not suitable for intelligent structural damage detection due to the limited computational power and storage capacities of smart sensors. In this paper, a two-stage and two-step algorithm is proposed for the identification of structural damage as well as unknown external excitations. In stage-one, structural state vector and unknown structural parameters are recursively estimated in a two-step Kalman estimator approach. Then, the unknown external excitations are estimated sequentially by least-squares estimation in stage-two. Therefore, the number of unknown variables to be estimated in each step is reduced and the identification of structural system and unknown excitation are conducted sequentially, which simplify the identification problem and reduces computational efforts significantly. Both numerical simulation examples and lab experimental tests are used to validate the proposed algorithm for the identification of structural damage as well as unknown excitations for structural health monitoring.

Structural parameter estimation combining domain decomposition techniques with immune algorithm

  • Rao, A. Rama Mohan;Lakshmi, K.
    • Smart Structures and Systems
    • /
    • 제8권4호
    • /
    • pp.343-365
    • /
    • 2011
  • Structural system identification (SSI) is an inverse problem of difficult solution. Currently, difficulties lie in the development of algorithms which can cater to large size problems. In this paper, a parameter estimation technique based on evolutionary strategy is presented to overcome some of the difficulties encountered in using the traditional system identification methods in terms of convergence. In this paper, a non-traditional form of system identification technique employing evolutionary algorithms is proposed. In order to improve the convergence characteristics, it is proposed to employ immune algorithms which are proved to be built with superior diversification mechanism than the conventional evolutionary algorithms and are being used for several practical complex optimisation problems. In order to reduce the number of design variables, domain decomposition methods are used, where the identification process of the entire structure is carried out in multiple stages rather than in single step. The domain decomposition based methods also help in limiting the number of sensors to be employed during dynamic testing of the structure to be identified, as the process of system identification is carried out in multiple stages. A fifteen storey framed structure, truss bridge and 40 m tall microwave tower are considered as a numerical examples to demonstrate the effectiveness of the domain decomposition based structural system identification technique using immune algorithm.

Numerical studies on the effect of measurement noises on the online parametric identification of a cable-stayed bridge

  • Yang, Yaohua;Huang, Hongwei;Sun, Limin
    • Smart Structures and Systems
    • /
    • 제19권3호
    • /
    • pp.259-268
    • /
    • 2017
  • System identification of structures is one of the important aspects of structural health monitoring. The accuracy and efficiency of identification results is affected severely by measurement noises, especially when the structure system is large, such as bridge structures, and when online system identification is required. In this paper, the least square estimation (LSE) method is used combined with the substructure approach for identifying structural parameters of a cable-stay bridge with large degree of freedoms online. Numerical analysis is carried out by first dividing the bridge structure into smaller substructures and then estimates the parameters of each substructure online using LSE method. Simulation results demonstrate that the proposed approach is capable of identifying structural parameters, however, the accuracy and efficiency of identification results depend highly on the noise sensitivities of loading region, loading pattern as well as element size.

무선 MEMS 시스템을 이용한 구조물 식별 (System Identification of a Building Structure Using Wireless MEMS System)

  • 김홍진
    • 한국소음진동공학회논문집
    • /
    • 제18권4호
    • /
    • pp.458-464
    • /
    • 2008
  • The structural health monitoring has been gaining more importance in civil engineering areas such as earthquake and wind engineering. The use of health monitoring system can also provide tools for the validation of structural analytical model. However, only few structures such as historical buildings and some important long bridges have been instrumented with structural monitoring system due to high cost of installation, long and complicated installation of system wires. In this paper, the structural monitoring system based on cheap and wireless monitoring system is investigated. The use of advanced technology of micro-electro-mechanical system(MEMS) and wireless communication can reduce system cost and simplify the installation. Further the application of wireless MEMS system can provide enhanced system functionality and due to low noise densities. Identification results are compared to ones using data measured from traditional accelerometers and results indicate that the system identification using wireless MEMS system estimates system parameters accurately.

On-line integration of structural identification/damage detection and structural reliability evaluation of stochastic building structures

  • Lei, Ying;Wang, Longfei;Lu, Lanxin;Xia, Dandan
    • Structural Engineering and Mechanics
    • /
    • 제63권6호
    • /
    • pp.789-797
    • /
    • 2017
  • Recently, some integrated structural identification/damage detection and reliability evaluation of structures with uncertainties have been proposed. However, these techniques are applicable for off-line synthesis of structural identification and reliability evaluation. In this paper, based on the recursive formulation of the extended Kalman filter, an on-line integration of structural identification/damage detection and reliability evaluation of stochastic building structures is investigated. Structural limit state is expanded by the Taylor series in terms of uncertain variables to obtain the probability density function (PDF). Both structural component reliability with only one limit state function and system reliability with multi-limit state functions are studied. Then, it is extended to adopt the recent extended Kalman filter with unknown input (EKF-UI) proposed by the authors for on-line integration of structural identification/damage detection and structural reliability evaluation of stochastic building structures subject to unknown excitations. Numerical examples are used to demonstrate the proposed method. The evaluated results of structural component reliability and structural system reliability are compared with those by the Monte Carlo simulation to validate the performances of the proposed method.

Identification of structural systems and excitations using vision-based displacement measurements and substructure approach

  • Lei, Ying;Qi, Chengkai
    • Smart Structures and Systems
    • /
    • 제30권3호
    • /
    • pp.273-286
    • /
    • 2022
  • In recent years, vision-based monitoring has received great attention. However, structural identification using vision-based displacement measurements is far less established. Especially, simultaneous identification of structural systems and unknown excitation using vision-based displacement measurements is still a challenging task since the unknown excitations do not appear directly in the observation equations. Moreover, measurement accuracy deteriorates over a wider field of view by vision-based monitoring, so, only a portion of the structure is measured instead of targeting a whole structure when using monocular vision. In this paper, the identification of structural system and excitations using vision-based displacement measurements is investigated. It is based on substructure identification approach to treat of problem of limited field of view of vision-based monitoring. For the identification of a target substructure, substructure interaction forces are treated as unknown inputs. A smoothing extended Kalman filter with unknown inputs without direct feedthrough is proposed for the simultaneous identification of substructure and unknown inputs using vision-based displacement measurements. The smoothing makes the identification robust to measurement noises. The proposed algorithm is first validated by the identification of a three-span continuous beam bridge under an impact load. Then, it is investigated by the more difficult identification of a frame and unknown wind excitation. Both examples validate the good performances of the proposed method.

System Identification and Damage Estimation via Substructural Approach

  • Tee, K.-F.;Koh, C.-G.;Quek, S.-T.
    • Computational Structural Engineering : An International Journal
    • /
    • 제3권1호
    • /
    • pp.1-7
    • /
    • 2003
  • For system identification of large structures, it is not practical to identify the entire structure due to the prohibitive computational time and difficulty in numerical convergence. This paper explores the possibility of performing system identification at substructure level, taking advantage of reduction in both the number of unknowns and the number of degrees of freedom involved. Another advantage is that different portions (substructures) of a structural system can be identified independently and even concurrently with parallel computing. Two substructural identification methods are formulated on the basis whether substructural approach is used to obtain first-order or second-order model. For substructural first-order model, identification at the substructure level will be performed by means of the Observer/Kalman filter Identification (OKID) and the Eigensystem Realization Algorithm (ERA) whereas identification at the global level will be performed to obtain second-order model in order to evaluate the system's stiffness and mass parameters. In the case of substructural second-order model, identification will be performed at the substructure level throughout the identification process. The efficiency of the proposed technique is shown by numerical examples for multi-storey shear buildings subjected to random forces, taking into consideration the effects of noisy measurement data. The results indicate that both the proposed methods are effective and efficient for damage identification of large structures.

  • PDF

A completely non-contact recognition system for bridge unit influence line using portable cameras and computer vision

  • Dong, Chuan-Zhi;Bas, Selcuk;Catbas, F. Necati
    • Smart Structures and Systems
    • /
    • 제24권5호
    • /
    • pp.617-630
    • /
    • 2019
  • Currently most of the vision-based structural identification research focus either on structural input (vehicle location) estimation or on structural output (structural displacement and strain responses) estimation. The structural condition assessment at global level just with the vision-based structural output cannot give a normalized response irrespective of the type and/or load configurations of the vehicles. Combining the vision-based structural input and the structural output from non-contact sensors overcomes the disadvantage given above, while reducing cost, time, labor force including cable wiring work. In conventional traffic monitoring, sometimes traffic closure is essential for bridge structures, which may cause other severe problems such as traffic jams and accidents. In this study, a completely non-contact structural identification system is proposed, and the system mainly targets the identification of bridge unit influence line (UIL) under operational traffic. Both the structural input (vehicle location information) and output (displacement responses) are obtained by only using cameras and computer vision techniques. Multiple cameras are synchronized by audio signal pattern recognition. The proposed system is verified with a laboratory experiment on a scaled bridge model under a small moving truck load and a field application on a footbridge on campus under a moving golf cart load. The UILs are successfully identified in both bridge cases. The pedestrian loads are also estimated with the extracted UIL and the predicted weights of pedestrians are observed to be in acceptable ranges.

Detection and parametric identification of structural nonlinear restoring forces from partial measurements of structural responses

  • Lei, Ying;Hua, Wei;Luo, Sujuan;He, Mingyu
    • Structural Engineering and Mechanics
    • /
    • 제54권2호
    • /
    • pp.291-304
    • /
    • 2015
  • Compared with the identification of linear structures, it is more challenging to conduct identification of nonlinear structure systems, especially when the locations of structural nonlinearities are not clear in structural systems. Moreover, it is highly desirable to develop methods of parametric identification using partial measurements of structural responses for practical application. To cope with these issues, an identification method is proposed in this paper for the detection and parametric identification of structural nonlinear restoring forces using only partial measurements of structural responses. First, an equivalent linear structural system is proposed for a nonlinear structure and the locations of structural nonlinearities are detected. Then, the parameters of structural nonlinear restoring forces at the locations of identified structural nonlinearities together with the linear part structural parameters are identified by the extended Kalman filter. The proposed method simplifies the identification of nonlinear structures. Numerical examples of the identification of two nonlinear multi-story shear frames and a planar nonlinear truss with different nonlinear models and locations are used to validate the proposed method.