Computational Structural Engineering
An International Journal
Vol. 3, No. 1, pp. 1~7 (2003)

Computational Structural
Engineering Institute

System Identification and Damage Estimation via Substructural Approach

K.F. Tee', C.G.Koh and S.T. Quek

Department of Civil Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260

Received June 2003; Accepted October 2003

ABSTRACT

For system identification of large structures, it is not practical to identify the entire structure due to the prohibitive computational
time and difficulty in numerical convergence. This paper explores the possibilit)‘/ of performing system identification at substructure
level, taking advantage of reduction in both the number of unknowns and the number of degrees of freedom involved. Another
advantage is that different portions (substructures) of a structural system can be identified independently and even concurrently
with parallel computing. Two substructural identification methods are formulated on the basis whether substructural approach is
used to obtain first-order or second-order model. For substructural first-order model, identification at the substructure level will
be performed by means of the Observer/Kalman filter Identification (OKID) and the Eigensystem Realization Algorithm (ERA)
whereas identification at the global level will be performed to obtain second-order model in order to evaluate the system’s stiffness
and mass parameters. In the case of substructural second-order model, identification will be performed at the substructure level
throughout the identification process. The efficiency of the proposed technique is shown by numerical examples for multi-storey
shear buildings subjected to random forces, taking into consideration the effects of noisy measurement data. The results indicate
that both the proposed methods are effective and efficient for damage identification of large structures.
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1. Introduction

The problem of structural identification becomes impor-
tant, particularly in relation to increasing number of aging
structures. As research interest intensifies, it is noted that
many methods proposed are suitable to small systems only
due to the ill-conditioned nature of inverse analysis. In real
world, analysis of engineering structures often requires
mathematical models with many degrees of freedom
(DOFs) to simulate their behaviour. A bigger challenge for
structural identification is to identify large systems, i.e.
system with many DOFs and unknown parameters. In
practice, measurement and identification for the entire
structure in one go is a difficult task. Therefore, in this
paper, the substructuring technique is employed to decom-
pose the large structural system into some smaller sub-
structures (hence with less DOFs and unknown para-
meters) for more effective identification. This can be
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described as a “divide and conquer” strategy. Neverthe-
less, substructures interact with from the remainder of the
structure (or adjacent substructures), and it is therefore
necessary to account for the interaction forces.

Koh et al. (1991) first proposed substructural system
identification (SSI) and used the Extended Kalman Filter
(EKF) as the numerical tool to identify unknown structural
parameters. This substructuring formulation of system
identification not only reduces the computation time con-
siderably but also helps to improve the convergence of the
structural parameters. Zhao et al. (1995) reported their
work on the substructural identification in frequency
domain for the identification of frequency dependent sys-
tems such as soil-structure interaction systems. Procedures
for assembling substructure transfer function data, sub-
structure state-space models, and substructure Markov
parameters were presented by Su et al. (1994). Yun (1997)
proposed a SSI using the sequential prediction error
method and an auto-regressive and moving average with
stochastic input (ARMAX) model. More recently, Koh
and Shankar (2003) proposed a frequency-domain approach
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of SSI with a numerical example of 50-DOF systems. An
attractive advantage of this approach is that identification
can be performed without measuring input excitation to
the whole structure.

Substructural system identification can follow either of
the two procedures. Briefly speaking, one can either (a)
first synthesize substructure data and then carry out system
identification at the global level based on the assembled
data, or (b) first perform system identification at the sub-
structural level and then employ substructure synthesis to
assemble substructure models. Although both approaches
are theoretically feasible, it is preferred to perform system
identification at the substructure level, mainly because
substructures are easier to identify than the assembled and
bigger structure.

In this paper, two SSI methods are proposed using the
Observer/Kalman filter Identification (OKID) and the
Eigensystem Realization Algorithm (ERA). In the first
method, identification will be performed at the substruc-
ture level by means of the OKID and the ERA whereas
identification at the global level will be performed to
obtain second-order model in order to evaluate the sys-
tem’s stiffness and mass parameters. In the second
method, identification will be performed at the substruc-
ture level throughout the identification process.

2. Basic Formulation

The dynamic response of a N-DOF linear structural sys-
tem can be represented by

M(D) +Lg(t)+Kq() = f(t) (1)

where M, L and K are the mass, damping, and stiffness
matrices of the structure, respectively, q is a displacement
vector and the overdot denotes differentiation with respect to
time ¢. The above model is referred to as the second-order
model. The equations of motion and the measurement equa-
tions can be written in the first-order state space form as

x(k+1) = Ax(k) +Bu(k) 2)
y(k) = Cx(k) +Du(k) 3

where x(k) is a nx 1 state vector, y(k) a m x 1 obser-
vation vector, and u(k) a r x 1 input vector. Matrices A, B,
C and D represents the system matrix, the input influence
matrix, the output influence matrix and the direct force
input term respectively.

2.1 Observer/Kalman Filter Identification (OKID)

For zero initial conditions, Egs. (2) and (3) can also be
written in matrix form for a sequence of ‘I’ consecutive
time steps as

y= Y v @

mx! mXx[(r+m)p+r] [(r+m)p+r]x!

where

y=[y(0) y(1) y@2) ...y(p) ...y(-1)

Y=[b CB CAB ..CA"'B]

u(@) u(l) u2) ... u(p) u(/-1)
v(0) v(l) v(ip-1) v(l-2)

V= v(0) ... v(p-2) v(l-3)
v.(.(.)) V(l—“p.—l)

Having identified the observer Markov parameters, the
systems Markov parameters can be retrieved using the
recursive formula. (Juang et al., 1993)

2.2 Eigensystem Realization Algorithm (ERA)

ERA begins by forming the generalized Hankel matrix,
composed of the Markov parameters. The ERA process
starts with the factorization of the first Hankel matrix
using singular value decomposition, H(0)=RZS". This is
the basic formulation of realization for the ERA (Juang et
al., 1985). The triplet

-1/2.T - T
A=Y RH(DS, Y, B=F 2 SE,

C=E,R,3 )

is a minimum realization where E =1, 0., 0. ... 0. I

with I denoting an identity matrix and O denoting a matrix
whose elements are all zeros, and E_ is defined similarity.

2.3 Conversion from First-order Model to Second-order
Model

By similarity transformation, the first-order model as
represented by Eq. (2) can be related to the second-order
model as represented by Eq. (1). Once the properly scaled
eigenvectors P and T eigenvalues are evaluated, the mass,
damping, and stiffness matrices of the structural model can
be obtained (Lus et al., 2001):

M = (PrP") " L=-MPT?P™M,
K=-r'PH", PP"=0 (6)
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3. Identification with Substructural First-Order
Model

A general systematic procedure for assembling multi-
substructure first-order model is formulated. This pro-
cedure can be used to assemble the first-order model
obtained for substructures, from the identification by
OKID/ERA. Subsequently, the global first-order model is
used to identify the second-order model. Assembling sub-
structure Markov parameters is an alternative to assem-
bling first-order models. However, identification with
ERA and conversion from first-order model to second-
order model will be in the global sense and this is imprac-
tical for large system. Thus, this approach is not presented
in this paper.

As an example to illustrate the substructure first-order
model for identification approach (without loss of gen-
erality), a 12-DOF lump mass system is considered as
shown in Fig. 1. Noting that the substructures have overlap
(or common) members, the substructural identification
will be referred to as the SSI with overlap. This structure
comprises three substructures 1, 2 and 3. It is required that
each substructure is allocated an actuator/sensor pair at
every interface DOF. At the interface, measurement can be
displacement, velocity, or acceleration. The actuators and
sensors located at the interior points do not have to be col-
located.

The first-order state space models of substructures are
represented by

(. “l
X, = Ax+[B B

ol |

CI Dll DII lll
| o
for s =1, 2 and 3. Superscript ‘I’ denotes internal DOFs

s

of the substructure concerned and superscript ‘J’ denoted
all interface DOFs of the substructure concerned. The pre-
ceding substructure first-order models are the results of
system identification performed at the substructure level in
OKID/ERA. Matrices A, B, C, and D, represent the sys-
tem matrix, the input influence matrix, the output influ-
ence matrix, and the direct force input term of the sth
substructure, respectively. Vector x_ is a state vector of the
sth substructure.

The interface inputs and outputs of the substructures and
the interface inputs and outputs of the global structure are
related by a coupling matrix T as
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Fig. 1. A 12-DOF lump mass structure with 3 substructures (SSI
with overlap)

ve=Ty u'=Tu (®)

Normally, the elements of the T matrix are ones and
zeros. Finally, we obtain a first-order state space model for
the global structural system with coupling matrix (Su et
al., 1994). The results are

A=A+B'QC
B=[B+B'QD" B'®") ' T"s ']
C- ¢+p"Qc

_SflT(f)IJ)—lé]

)

I T O e

_S—IT(ﬁJJ)—lD“ -
where
s=T™ 1T Q=" 181" D"y

1
- A - B,
A= A2 s B = Blz s etc
A3 1

The first-order state space model with matrices defined
in Eq. (9) will be referred to as the global structural first-
order state space model. This model describes the dynam-
ics of the substructures when their interface compatibility
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and equilibrium conditions are enforced. However, this
first-order model is not a minimal-order model for the glo-
bal structure. Elimination of these extra state variables can
be accomplished by using a minimal realization algorithm.
Fortunately, the global first-order model can be used
directly in the conversion from first-order model to sec-
ond-order model without using any minimal realization
algorithm. The proposed substructure synthesis first-order
models are valid only for assembling continuous-time
models. The sampling time must be set small enough to
obtain accurate results. It can be easily seen that only
accelerations are required to compute the interface forces
as opposed to displacements and velocities which are
required in the following approach.

4. Identification with Substructural Second-
Order Model

In order to write the equations of motion for the sub-
structure, the equations of motion for the entire structure
can be written as follows

M MY {ql(t)} LI L”{ql(t)}
MJI MJJ qj(t) LJI LJJ qJ(t)
k" k"/d®] [fo
e ol el
K" K'|lq(t) (v

where superscript J denotes the DOFs at the two inter-
face ends of the substructure. These DOFs are referred to
as interface DOFs. The remaining DOFs are denoted by
superscript / and referred to as internal DOFs.

To illustrate the formulation for the substructural sec-
ond-order model identification, consider a smaller system
that is a 7-DOF system due to space limitation. The build-
ing of 7-storey decomposed into three substructures 1, 2
and 3. DOFs are numbered upwards from bottom. The
equation of motion for substructure can be written as:
£ds +M g +K{q, =

s s

M

(Mgl Z'Ke g+ 2L g (11)
for s = 1, 2 and 3. q* is the relative displacement with
respect to ¢/ and 1=[111... 1]". The elements of the Z/ are
ones and zeros depending on whether particular DOF is
considered to account for interaction force. If the par-
ticular interface DOF is used to account for interaction
forces, the value of that location is equal to one.

4.1 Substructure 1 (S,)

The first substructure S, comprises the 6™ and 7% floors
with the observed response at the 5% floor treated as an
input motion. The equation of motion for S, can be for-
mulated by assuming the substructure behaves as a struc-
ture subjected to support excitation as:

[M6 OHqZ}J{L6+L7 -L7:qu}+l:K6+K7 —K7Hq2}
0 Mylq,) [ -Lr Lijlg) | K Kiflg
_{o}_ M, 0 {%}

f7 0 M7 qs

In structural dynamics applications, however, acceler-
ations are often the directly measured response by means
of accelerometers. Though displacements and velocities
can be obtained by numerical integration of the accel-
erations measured, numerical error would be introduced
inevitably. To resolve this problem (for practical con-
venience), the substructural identification is formulated in
such a way that only accelerations (as opposed to dis-
placements or velocities) at interface DOFs are required to
compute the interface forces at S,.

(12)

4.2 Substructure 2 (S,)

The second substructure S, comprises 349, 4 and 5%
floors, with the 2 and 6* floors as the interfaces. The
equations of motion for S, can be written as:

M, 0 o0|l%] [L,+L, -L, o ||®
0 My 0fqup+| -Ly Ly+L; -Ls g+
00 Myly 0 Ls  LstLy|g
K,+K, -K, o ||as| {o]| [M; 0 o][%
-Ky  Ky+Ks  —K; qi =10,—10 M, 0 q;
|0 Ks  Ks+Kd (g fs| |0 0 My a
0 0
40 |4 0
LsGs | | Keds (13)

K, and L, and the corresponding displacement and
velocity are obtained from the identification results of S,.

4.3 Substructure 3 (S;)

The third substructure S, comprises the 1% and 2" floors,
with the 3 floor as the interface. The equations of motion
for S, can be written as:
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M, 0 {q1}+ L,+L, -L, {ql}+
0 Myl L, Ly+Lsla:
K,+K, -K, |[a/] [0 0 0
= 14
{ K2+KJ{‘12} {fZ +[L3q3}+[K3qJ (19

_I(2
Similar to S,, K; and L; and the corresponding dis-
placement and velocity are obtained from the identifi-
cation results of S,.

5. Damage Detection

It is possible to detect damage by identifying storey stiff-
ness values and comparing them with the corresponding
values of the original (presumably undamaged) state. For
this purpose, a simple stiffness integrity index is defined as

_ Kyli)
FTK ()

(15)

where K, (1) and K, (i) are the storey stiffness value of
the i* storey for the damaged state and undamaged state,
respectively. The stiffness integrity index is 1 for no loss in
stiffness (no damage) and 0 for complete loss of stiffness
(complete damage).

6. Numerical Examples

A 12-storey shear building model (Figure 1) is studied to
test the performance of the two proposed substructural
identification that is identification with substructural first-
order model and second-order model. The signals of Gaus-
stan white noise are used as input force and are assumed as
known. The numerical prediction of the system response
(“measurement”) is performed for 17 s with iterative time
step of 0.085 s by numerically simulation time response of
linear time invariant models using MATLAB toolbox.

Damage is simulated by reducing the storey stiffness
value. Two damage scenarios are studied: (1) with single
damage and (2) with multiple damages. Scenario 1 con-
tains 20% damage in the fourth floor (i.e. the remaining
stiffness is 80% of the original value). Scenario 2 has two
damage locations: 30% damage in the sixth floor and 20%
in the ninth floor.

6.1 Verification of Substructural First-order Model
The task is to identify stiffness, mass and damping
matrices of the 12-DOF system. There are 36 unknown
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parameters to be identified. However, stiffness coefficients
are required for damage identification therefore only iden-
tified stiffness is shown. Three excitation forces act on the
4t 8h and 12% nodes. Response “measurements” of accel-
erations are assumed to be available at all nodes. The
structure is divided into three substructures: S, = [7-12],
i.e. 7" tol2vnodes inclusive, and S, = [3-8] and S, = [1-4].
Noting that the substructures have overlapping (or com-
mon) members, the substructural identification procedure
will be referred to as the SSI with overlap.

6.2 Verification of Substructural Second-order Model

The structure is divided into the same three substruc-
tures as above. Three excitation forces act on the 4th, 8
and 12% nodes. Response “measurements” of accelerations
are assumed to be available at all nodes whereas dis-
placements and velocities are available at the 2%, 5% and
9th pnodes.

The first substructure is .S, = [7-12], for which no damp-
ing forces and elastic forces are needed to input at the
interface. Accordingly, only accelerations (as opposed to
displacements or velocities) at interface DOFs are required
to compute the interface forces at S,. The second sub-
structure is S, = [3-8], for which the displacements and
velocities at 20d and 9™ nodes are treated as input. Iden-
tified K, from the S, will then be treated as known in the
subsequent substructure, which is S,. The third substruc-
ture is S, = [1-4], for which the displacement and velocity
at 5% node is treat as input. K is identified in S, and taken
as known in ;.

6.3 Effects of I/O noise

For the noise free case, the identification with sub-
structural first-order model and second-order model yields
an exact model for the global system. Therefore, the
results of noise-free system identification are not shown
here. To simulate noise system, both the input and output
signals are polluted with 10% root-mean-square Gaussian
white noise. The three identified substructural first-order
models are assembled by using Eq. (9). Then, the iden-
tified global first-order model can be used directly in the
conversion from first-order model to second-order model
without any minimal realization algorithm in order to eval-
uate the storey stiffness values. However, in the case of
substructural second-order model, the identified storey
stiffness values can be determined directly from the iden-
tified substructural second-order models without any syn-
thesis process. This is because the distribution of the
storey stiffness values in the stiffness matrix is known a
priori. First, the undamaged case is considered. Table 1
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Table 1. Identified storey stiffness for undamaged case with
10% I/O noise

Identified Stiffness in kN/m

E,xact (Error in Bracket)
Storey  Stiffness
Substructural Substructural
(kN/m) .
First-order Model  Second-order Model
1 500 480 (-4.0%) 510 (2.0%)
2 500 530 (6.0%) 515 (3.0%)
3 500 523 (4.6%) 489 (-2.2%)
4 500 524 (4.8%) 520 (4.0%)
5 500 529 (5.8%) 528 (5.6%)
6 500 510 (2.0%) 511 (2.2%)
7 500 507 (1.4%) 492 (-1.6%)
8 500 492 (-1.6%) 465 (-7%)
9 500 496 (-0.8%) 520 (4.0%)
10 500 520 (4.0%) 509 (1.8%)
11 500 519 (3.8%) 472 (-5.6%)
12 500 489 (-2.2%) 498 (-0.4%)
Mean Error 3.42% 3.28%
Max. Error 6.0% 7.0%
1.2
1
x 0.8
5
£ 06
2 g
5 0411
L
£ 02
0

t 2 3 4 5 6 7 8 9 10 11 12
Storey

:D First-order Model £ Second—orc;;;Model

Fig. 2. Identified stiffness integrity index for Scenario 1 (single
damage)
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Fig. 3. Identified stiffness integrity index for Scenario 2 (multiple
damage)

compares the identified stiffness with the exact values
under the influence of I/O noise. Then, Fig. 2 and Fig. 3

present the identified stiffness integrity indices (as defined
in Eq. (15)) for Scenarios 1 and 2, respectively.

First, the stiffness identification results are presented.
The identification results of substructural first-order model
and second-order model are almost the same with I/O
noise level of 10%. The mean error and largest error is
3.42% and 6.0% respectively for the identification with
substructural first-order model with overlap. The corre-
sponding values are about 3.28% and 7.0% for the sub-
structural second-order model with overlap. As expected,
the identification errors increase with the noise level. Nev-
ertheless, the identification results are reasonably good for
such a high 10% noise as shown in Table 1. Normally, SSI
without overlap is generally better than the SSI with over-
lap. This is due to the error propagation from one sub-
structure to another in the SSI with overlap. However,
there is not much error propagation problem from the pro-
posed approaches as shown in Table 1 with reasonably
good results for substructure with overlap.

Both the proposed approaches are effective in identi-
fying the damage locations and extents. As shown in Fig.
2, the mean and maximum error in the identified stiffness
integrity index is 6.72% and 11.5% for substructural first-
order model approach and 5.88% and 9.3% for sub-
structural second-order model approach in Scenario 1
under 10% 1/O noise. The maximum error in Scenario 2 is
larger -- 7.14% and 6.95% for the both approaches respec-
tively, under 10% noise as shown in Fig. 3. Although full
structure identification results are not shown in this paper,
it can be realized that both the proposed substructure
methods give much better results than the full structure
identification method does. Identification of small struc-
ture like 12-DOF system with substructural first-order
model is quite attractive. However, it may have numerical
difficulties when one needs to determine the second-order
model from the global first-order model of large system.
The important point to note here is that the identification
with substructural second-order model can avoid these
numerical difficulties because the conversion from first-
order model to second-order model is done in substructure
level. In contrast, identification with substructural first-
order model requires accelerations only whereas sub-
structural second-order model needs to have velocities as
well as displacements to compute the interface forces.

7. Concluding Remarks

The possibility of performing system identification at
the substructure level in first-order model and second-
order model has been investigated in this paper. These two
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approaches are developed for improving the identification
results adopting the strategy of “divide and conquer”. The
motivation for the two proposed methods is to reduce the
number of unknown by splitting a larger structure into sev-
eral smaller structures. Hence, instead of full structure,
identification is made easier in smaller substructures since
the size of matrices involved reduces. It is found that cou-
pling of substructure models can be accomplished by
accounting for in some way the interaction forces at inter-
faces. Therefore, to produce exact substructure coupling in
the case of substructural first-order model, the requirement
is placing collocated actuators and sensors at all the inter-
face DOFs whereas in the case of substructural second-
order model, the requirement is velocities and displace-
ments are needed at some of the interface DOFs. There-
fore, only accelerations are required in the former
approach whereas velocities and displacements in the lat-
ter approach. In the identification with the substructural
first-order model, the proposed substructure synthesis
first-order models are valid only for assembling contin-
uous-time models. The sampling time must be set small
enough to obtain accurate results. Identification with sub-
structural second-order model is preferred when dealing
with large structure in order to avoid numerical diffi-
culties in conversion from first-order model to second-
order model. From the studies in this paper, it is clearly
shown that the substructural in first-order model and sec-
ond-order model have better performance compared to the
full structure identification method. The results are sat-
isfactory considering the presence of I/O noise. The iden-
tified stiffness integrity index, in particular, is found to
reveal the location and extent of damage in the numerical
simulation study accounting for effects of I/O noise.
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