• Title/Summary/Keyword: structural strength evaluation

Search Result 1,130, Processing Time 0.043 seconds

Development of the Buckling Strength Assessment System based on Offshore Structure Design Code (해양구조물 설계코드에 기반한 좌굴강도 평가 시스템 개발)

  • Kim, Ul-Nyeon
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.38-45
    • /
    • 2017
  • FPSO is widely used to develop deep sea oil fields and HHI has constructed ten(10) FPSOs. During these constructions, relevant structural design criteria such as yielding, buckling, fatigue, collision and impact strength were applied to verify structural safety. To apply the buckling strength evaluation for structures, the critical buckling stresses and applied stresses of relevant panels should be calculated. The plate and stiffened panels are to be idealized, which are needed much time and efforts by designers. Therefore, program development is necessary in order to evaluate the buckling strength conveniently and accurately. In this study, the buckling strength assessment system by using offshore code, DNV-RP-C201 was developed under MSC/PATRAN, pre-post program of finite element method. Graphic user interface program is written in MSC/PATRAN PCL functions. Source program to evaluate the buckling strength is developed in FORTRAN programming languages. The developed program is verified by comparing with the results of the Nauticus Hull developed by DNV Classification Society, and applied to the marine construction project conducted by Hyundai Heavy Industries LTD.

  • PDF

An Analytical Study on Fatigue Strength Evaluation Procedure for the Bogie Frame of Tilting Railway Vehicle (틸팅대차 프레임에 대한 피로강도평가 절차에 관한 해석적 연구)

  • Kim Nam-Po;Kim Jung-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.4
    • /
    • pp.321-329
    • /
    • 2005
  • This paper has established the strength evaluation procedure of the bogie frame for the Korean tilting train that is being developed in KRRI, In order to establish the strength evaluation procedure, firstly, the loading conditions imposed on the tilting train were investigated. In addition, the static and fatigue strength of the bogie frame has been evaluated. In order to derive the dynamic loads according to the carbody tilting, the load redistribution effect by carbody tilting, the unbalanced lateral acceleration effect by high-speed curving and the tilting actuator force effect have been considered. Multi-body dynamic analyses have been carried out to evaluate the tilting load cases and the strength analysis has been performed by finite element analyses. From this study, the structural safety of the bogie frame could be ensured.

Strength Evaluation of a Doubler Plate of a Ship S011c111re subjected to Biaxial In-plane Compression and Shear Load (양축방향 면내압축과 전단하중을 받는 선박 이중판의 강도 평가)

  • 함주혁
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.85-91
    • /
    • 2001
  • A study for the structural strength analysis on the doubler plate subjected biaxial in-plane compression and shear load has been performed through the systematic evaluation process. In order to estimate the proper static strength of the doubler plate, non-linear elasto-plastic analysis is introduced. Gap element modeling for contact effect between the main plate and the doubler is prepared and nonlinear analysis procedures are illustrated based on MSC/N4W. In addition, some design guides are suggested through the consideration of several important effects such as corrosion of main plate, doubler width, doubler length and doubler thickness. Finally, theses result are compared with a developed design formula based on the buckling strength and general trends. The design guides, according to the variation of design parameters are discussed.

  • PDF

Experimental Evaluation Study on the Integrity of Plastic Shell Structure using Acoustic Emission Technique (음향방출기법을 응용한 플라스틱 쉘 구조물의 건전성 평가 연구)

  • Shul, Chang-Won;Lee, Kee-Bhum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.39-47
    • /
    • 2005
  • An acoustic emission technique is applied to the tensile tests of the plastic specimen under the different test speeds and the structural integrity evaluation of the plastic shell structure. Several AE characteristics are acquired from the tensile tests and they are proven to be useful parameters in evaluating its structural integrity. The results shows that tensile strength has almost constant value over some higher speed region while revealing some increasing tendency in strength as the test speeds up in lower speed region. The crack initiation loads and locations are accurately evaluated during the static compression testing of the plastic shell structures by using acoustic emission technique.

Evaluation Study on the Mechanical and Thermal Properties of High Strength Structural Steel at High Temperature (고강도 구조용 강재의 고온물성 평가연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.27 no.3
    • /
    • pp.72-79
    • /
    • 2013
  • Recently, building constructions have been developed toward high-rise, long span, and multi-complexed using the high strength materials, optimized section. But the structural behavior of steel structural members built with a high strength steel at fire condition is not clarified because of lacking of information of related references such as mechanical and thermal properties at high temperature situation. In this paper, to evaluate the structural stability of member or frame of steel framed building at fire situation through the engineering method, the mechanical and thermal experimental coupon tests have conducted at various high temperatures and the comparison to those of ordinary strength steels were done.

Two-way Shear Strength Evaluation of Transfer Slab-Column Connections Through Nonlinear FE Analysis (비선형유한요소해석을 통한 전이슬래브-기둥 접합부의 2면 전단강도 평가)

  • Jeong, Seong-Hun;Kang, Su-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.315-329
    • /
    • 2018
  • Recently, RC transfer slab systems have been used widely to construct high-rise wall-type apartments for securing parking space or public space. However, it is problem that the design method and structural performance evaluation method developed for thin RC flat slab are still used in the design of the transfer slab whose thickness is very thick and therefore structural behavior is expected to be different from RC flat slab. Thus, for the rational design of the transfer slab, the ultimate shear behavior of the RC transfer slab system is required to be analyzed properly. Accordingly, in the present study, the two-way shear behavior of the transfer slab was analyzed using nonlinear FEM according to various design parameters such as thickness of the transfer slab, strength of concrete, shear span ratio, and reinforcement ratio. In addition, the two-way shear strength evaluations of RC transfer slab by the existing evaluation methods were verified by comparing those with the results of nonlinear FEM analysis.

Evaluation of Structural Performance of RC Deck Slabs by High-Strength Concrete (고강도 콘크리트를 적용한 RC 바닥판의 정적 성능 평가)

  • Bae, Jae-Hyun;Hwang, Hoon-Hee;Park, Sung-Yong;Joh, Keun-Hee
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.89-95
    • /
    • 2016
  • Lately, the high-strength concrete is often used to increase the lifespan of bridges. The benefits of using the high-strength concrete are that it increases the durability and strength. On the contrary, it reduces the cross-section of the bridges. This study conducted structural performance tests of the bridge deck slabs applying high-strength concrete. As result of the tests, specimens of bridge deck slabs were destroyed through punching shear. Moreover, the tests exposed that the high-strength concrete bridge deck slabs satisfy the flexural strength and the punching shear strength at ultimate limit state(ULS). Also, limiting deflection of the concrete fulfilled serviceability limit state(SLS) criteria. These results indicated that the bridge deck slabs designed by high-strength concrete were enough to secure the safety factor despite of its low thickness.

Analytical Strength Evaluation of a Tilting Bogie Considering Carbody Tilting Effect (차체 틸팅효과를 고려한 틸팅대차 해석적 강도평가)

  • Kim Jung-Seok;Kim Nam-Po;Koo DongHae
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.744-747
    • /
    • 2004
  • This paper presents a strength evaluation of a tilling bogie frame for the Korean tilting train, The tilting bogies of the tilting train are subjected to different loading conditions compared with the bogie of the conventional railway vehicles because of the carboloy tilting on curves. We classified the load cases as two categories such as non-tilting case and tilting case. For the two categories. we have carried out structural analysis of the bogie frame to evaluate the strength of the frame. And then, we modified the shape and thickness for the weak areas of the bogie frame to ensure structural safety.

  • PDF

Evaluation of Performance on Repair Materials for Creek Concrete Structures (콘크리트 복개구조물용 보수재료의 성능 평가)

  • Lee, Chang-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.205-212
    • /
    • 2002
  • The deterioration rate of concrete structures in urban area is accelerated due to rapid urbanization and environmental pollution. Repair materials and methods newly introduced in Korea should be investigated whether they are appropriate for the urban environment in Korea. The creek concrete structures are exposed in severe environmental condition than others. Based on these background in mind, the study is focused on evaluation of performance on repair materials used to rehabilitate creek concrete structures. To evaluate the performance of repair materials, four kinds of repair materials were selected based on polymer emulsion. This experimental study was conducted on fundamental performance such as setting time, compressive strength, bending strength, bonding strength, thermal expansion coefficient, and durability performance such as chloride diffusion, carbonation, chemical attack, and steel corrosion rate. On the basis of this study, the optimal repair material which is proper to the environment condition can be selected and service life of creek concrete structures can be extended. As a result, the life cycle cost can be reduced and the waste of material resources will be cut down.

Property Evaluation of the Freeze-Thawing for Lightweight Concrete with Development of Structural Lightweight Aggregates (구조용 경량골재 개발에 따른 경량콘크리트의 동결융해특성에 관한 연구)

  • 장동일;채원규;조광현;김광일;손영현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.129-136
    • /
    • 1998
  • In this study, lightweight aggregates were developed to see the possible application as a structural uses. For the evaluation purpose, several testings were conducted to compare the physical characteristics between the controlled lightweight aggregates and other lightweight aggregates purchased from different sources. The tests included property changes of fresh concrete and strength characteristics of hardened concrete for both normal and high strength ranges. In addition, a experiment was performed to analyze the freezing and thawing resistance of new lightweight aggregate concrete against other lightweight aggregate concrete against other lightweight aggregate concretes with some experimental parameters such as lightweight aggregates, curing conditions, and water-cement ratio. The test showed that the new lightweight aggregate could be used structural components. Continuous study will be planned for future evaluations.

  • PDF