• Title/Summary/Keyword: structural stiffness

Search Result 3,288, Processing Time 0.026 seconds

Cyclic Loading Test for Composite Beam-Column Joints using Circular CEFT Columns (콘크리트피복 원형충전강관 기둥-강재보 접합부에 대한 반복하중실험)

  • Lee, Ho Jun;Park, Hong Gun;Choi, In Rak
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.411-422
    • /
    • 2017
  • In this study, to investigate the seismic performance of beam-column joints using concrete-encased and -filled circular steel tube(CEFT) columns, two types of tests were performed: (1) column - flange tension test and (2) beam - column joint cyclic load test. In column - flange tension test, test parameters were concrete encasement and connection details: flange width and strengthening rebar. Five specimens were tested to investigate the load-carrying capacity and the failure mode. Test results showed that increase of flange width from 200mm to 350mm result in increase of connection strength and stiffness by 61% and 56%, respectively. Structural performances were further improved with addition of tensile rebars by 35% and 92%, respectively. In cyclic loading test, three exterior beam-column joints were prepared. Test parameters were strengthening details including additional tensile rebars, thickened steel tube, and vertical plate connection. In all joint specimens, flexural yielding of beam was occurred with limited damages in the connection regions. In particular, flexural capacity of beam-column joint was increased due to additional load transfer through tube - beam web connection. Also, connection details such as increase of tube thickness and using vertical plate connection were effective in improving the resistance of panel zone.

Response of circular footing on dry dense sand to impact load with different embedment depths

  • Ali, Adnan F.;Fattah, Mohammed Y.;Ahmed, Balqees A.
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.323-336
    • /
    • 2018
  • Machine foundations with impact loads are common powerful sources of industrial vibrations. These foundations are generally transferring vertical dynamic loads to the soil and generate ground vibrations which may harmfully affect the surrounding structures or buildings. Dynamic effects range from severe trouble of working conditions for some sensitive instruments or devices to visible structural damage. This work includes an experimental study on the behavior of dry dense sand under the action of a single impulsive load. The objective of this research is to predict the dry sand response under impact loads. Emphasis will be made on attenuation of waves induced by impact loads through the soil. The research also includes studying the effect of footing embedment, and footing area on the soil behavior and its dynamic response. Different falling masses from different heights were conducted using the falling weight deflectometer (FWD) to provide the single pulse energy. The responses of different soils were evaluated at different locations (vertically below the impact plate and horizontally away from it). These responses include; displacements, velocities, and accelerations that are developed due to the impact acting at top and different depths within the soil using the falling weight deflectometer (FWD) and accelerometers (ARH-500A Waterproof, and Low capacity Acceleration Transducer) that are embedded in the soil in addition to soil pressure gauges. It was concluded that increasing the footing embedment depth results in increase in the amplitude of the force-time history by about 10-30% due to increase in the degree of confinement. This is accompanied by a decrease in the displacement response of the soil by about 40-50% due to increase in the overburden pressure when the embedment depth increased which leads to increasing the stiffness of sandy soil. There is also increase in the natural frequency of the soil-foundation system by about 20-45%. For surface foundation, the foundation is free to oscillate in vertical, horizontal and rocking modes. But, when embedding a footing, the surrounding soil restricts oscillation due to confinement which leads to increasing the natural frequency. Moreover, the soil density increases with depth because of compaction, which makes the soil behave as a solid medium. Increasing the footing embedment depth results in an increase in the damping ratio by about 50-150% due to the increase of soil density as D/B increases, hence the soil tends to behave as a solid medium which activates both viscous and strain damping.

A Study on Applicability and External / Internal Stability of true MSEW abutment with slab (순수형 보강토교대의 슬래브교에 대한 적용성 및 외적/내적 안정성 검토)

  • Park, Min-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.263-274
    • /
    • 2018
  • In this study, the applicability and external/internal stability of a MSEW abutment with a slab were investigated. Structural analysis of slab bridges between 10 ~ 20.0 m and thicknesses of 0.7 ~ 0.9 m was carried out to calculate the reaction forces due to dead and live loads acting on the bridge supports. The slab bridge with a length of 20.0 m satisfied the allowable contact pressure of 200 kPa for the true MSEW abutment. Because the external stability of the true MSEW abutment was dominated by the geometry of the MSE wall, the change in the factor of safety due to the load of the super-structure is small. Because the stiffness of the foundations is fixed and the load of the super-structure is increased, the factor of safety of the bearing capacity was reduced. As the load of the super-structure was increased, the horizontal earth pressure of the true MSEW abutment increased greatly. As a result, the pullout and fracture of the uppermost reinforcement, which are the factors of safety, did not meet the design criteria. Therefore, it is necessary to increase the pullout resistance and the long-term allowable tensile force of the reinforcement placed on the top of the reinforced soils to ensure efficient design and performance of a true MSEW abutment.

Dynamic Analysis of External Fuel Tank and Pylon Using Stick Model (스틱모델을 이용한 외부연료탱크 및 파일런 동특성 해석)

  • Kim, Hyun-gi;Kim, Sung Chan;Park, Sung Hwan;Choi, Hyun-Kyung;Hong, Seung Ho;Ha, Byung Kun
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.21-27
    • /
    • 2020
  • Aircraft should be equipped with various external stores for mission performance. Since these external stores may cause structural instability of aircraft, an evaluation of the effects between the aircraft and the external stores is required. For this purpose, an aircraft dynamic characteristics analysis reflecting an external store was performed, and the finite element model for the analysis of aircraft dynamic characteristics should simulate the dynamic characteristics of the component as accurately as possible while using a minimum of the nodes and elements. In this study, a stick model was constructed for dynamic characteristics analysis of the external fuel tank and installation pylon using MSC Patran/Nastran. For the calculation of the equivalent stiffness of the stick model, a simple beam theory was applied to construct the stick model of each part, and the validity of each stick models was confirmed by mode comparison with the fine model. Additionally, the model analysis of the stick model assembly, simulating a pylon equipped with an external fuel tank was performed to confirm that the basic modes required for the analysis of aircraft dynamic characteristics are well extracted. Finally, it was confirmed that the developed stick model assembly could be used for analysis of aircraft dynamic characteristics by comparing the errors in modes between the fine model assembly and the stick model assembly.

The Development on the Buckling Strength Estimation Formula of Plate Members in Consideration of Inplane Tension(I) (면내인장력을 고려한 판부재의 좌굴강도 평가식 개발 (I))

  • Ham, Juh H.;Kim, Ul N.;Chung, Yun S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.2
    • /
    • pp.111-118
    • /
    • 1996
  • Ship structure basically consists of plate members and it's overall strength depends an the stiffness and strength of each plate member. The buckling strength of plate is one of the most important design criteria when we investigate the structural intergraty. Therefore, it is necessary to surly reasonable buckling formula in order to carry out a more efficient and reliable design. In the present study, the buckling design formula of plate panels under combined loads(inplane compression, tension and shear) is obtained on the theoretical solution or reference paper. This formula is compared with the existing theoretical solution, other author's formula[1], design codes of LR and results which are obtained by numerical analysis. It has a good correlation with numerical analysis results or theoretical ones. When we evaluate buckling strength of plate panels, this formula can be presented with reasonable accuracy.

  • PDF

Bending Behavior of Preservative Treated Pitch Pine Stress-Laminated Timber (방부처리 리기다소나무 응력적층재의 휨거동 특성)

  • Kim, Kwang-Mo;Shim, Kug-Bo;Kim, Byoung-Nam
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.306-315
    • /
    • 2010
  • The stress laminated timber, which could be manufactured by small dimension lumber on construction site, has high possibilities for bridges in remote area, such as recreation forest or forest road, because those bridges may be short span and low frequency in use. The stress laminated timber has merits of easiness for preservative treatment and transportation because it is manufactured with small dimension lumber. This study was carried out to analyze performances of stress laminated timber manufactured with preservative treated domestic pitch pine for developing structural design data for stress laminated timber bridges for vehicular traffic. Perpendicular to grain compressive performance by preservative treatment and bending performance by bored holes of pitch pine lumber was analyzed. Then, the effects of bending performance by pre-stress pressure, distance of bolts, number of laminations and planning were analyzed. Conclusively, planning of lumber was not necessary for manufacturing stress laminated timber, and 80% of bending stiffness criteria was maintained as pre-stress pressure was higher than 3.0 kg/$cm^2$. However, further researches are needed to define the effects of bolt distances and number of laminations. The results of this research would be basic data for design stress laminated timber bridges for vehicular traffic in Korea.

Comparison of Behavior of Connections between Modular Units according to Shape of Connector Plates (연결 강판 형상에 따른 모듈러 유닛 간 접합부의 거동 비교)

  • Lee, Sang Sup;Bae, Kyu Woong;Park, Keum Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.6
    • /
    • pp.467-476
    • /
    • 2016
  • For the connections between modular units in modular buildings, the bolted joints with connector plates are used commonly. The strength of structure is determined by the weakest part of structure and the connections may be weaker than the members being joined. Therefore, to check the safety of modular building, the structural performance of connections between modular units as well as that of beam-to-column connections should be evaluated. In this study, the behavior of module to module connection with straight and cross shaped connector plates is investigated by lateral cyclic tests according to KBC2009 0722.2.4 which shall be conducted by controlling the story drift angle in the width and the longitudinal direction respectively. All of test results generally show the stable ductile behavior up to 0.04rad drift levels and the tests in longitudinal direction show a superior energy dissipation per cycle in each of the load steps. However, the straight shaped connector plates have the degradation of stiffness with cyclic loading and the larger drift angle of column than the cross shaped connector plates.

Calculations of Flat Plate Deflections Considering Effects of Construction Loads and Cracking (시공하중 및 균열 효과를 고려한 플랫 플레이트의 처짐 산정)

  • Kim, Jae-Yo;Im, Ju-Hyeuk;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.797-804
    • /
    • 2009
  • The structural designs of RC flat plates that have insufficient flexural stiffness due to lack of support from boundary beams may be governed by serviceability as well as a strength criteira. Specially, since over-loading and tensile cracking in early-aged slabs significantly increase the deflection of a flat plate system under construction, a construction sequence and its impact on the slab deflections may be decisive factors in designs of flat plate systems. In this study, the procedure of calculating slab deflections considering construction sequences and concrete cracking effects is proposed. The construction steps and the construction loads are defined by the simplified method, and then the slab moments, elastic deflections, and the effective moment of inertia are calculated in each construction step. The elastic deflections in column and middle strips are magnified to inelastic deflections by the effective moment of inertia, and the center deflection of slab are calculated by the crossing beam method. The proposed method is verified by comparisons with the existing test result and the nonlinear analysis result. Also, by applications of the proposed method, the effects of the slab construction cycle and the number of shored floors on the deflections of flat plates under construction are analyzed.

Hysteretic Behavior Evaluation of a RC Coupling Beam using a Steel Fiber and Diagonal Reinforcement (강섬유와 묶음철근 보강을 통한 고성능 연결보의 이력거동 평가)

  • Oh, Hae Cheol;Lee, Kihak;Han, Sang Whan;Shin, Myoungsu;Jo, Yeong Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.291-298
    • /
    • 2015
  • In this paper, a bundled diagonal reinforcement using high performance steel fiber was proposed to enhance the construct ability and seismic performance. Experiments of coupling beam was composed of four specimens and the hysteretic behavior evaluated for reverse cyclic loading to specimens using high performance steel fiber. The main variables of the experiment is a amount of stirrup and bundled reinforcement, depending on whether the mix of steel fiber. Specimen which criteria was applied 100% of stirrup and bundled diagonal reinforcement of ACI318 criteria. With this, by appling same diagonal reinforcement, two specimens were created by adjusting stirrup of 75%, 50%. So, a total of four specimens were produced. When coupling beam was placed concrete, this experiment was mixed in a content of steel fiber 1%. All the specimens were produced by aspect ratio 3.5(l/h=1050/300) to a half-scale. In this result, two specimens as reduced to stirrup of 75%, 50% was no significant difference in the strength, stiffness and energy dissipation capacity, respectively compared to the stirrup of 100%.

Static Behavior of Stud Shear Connector for UHPC Deck (초고성능 콘크리트 바닥판을 위한 스터드 전단연결재의 정적 거동)

  • Lee, Kyoung-Chan;Kwark, Jong-Won;Park, Sang-Hyeok;Kim, Jee-Sang
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.573-579
    • /
    • 2014
  • Typical composite girder has been composed with conventional concrete deck and steel girder. Recently, ultrahigh-performance-concrete (UHPC) deck is proposed in order to enhance durability and reduce weight of deck as well as to increase stiffness and strength of the composite girder. This study investigates that a headed stud is still compatible as a shear connector for the UHPC deck and steel girder composite beam. Twelve push-out specimens are prepared to evaluate the static strength of stud shear connectors embedded in the UHPC deck. The test program proves that the static strength of the stud shear connectors embedded in UHPC well meets with design codes described in AASHTO LRFD. Chosen experimental variables are aspect ratio of height to diameter of stud, thickness of deck and thickness of concrete cover over the head of stud. From the test program, aspect ratio and cover thickness are investigated to mitigate the regulations of the existing design codes. The minimum aspect ratio and the minimum cover thickness given in AASHTO LRFD are four and 50mm, respectively. This limitation hinders to lower the thickness of the UHPC deck. The results of the experiment program give that the aspect ratio and the cover thickness can be lower down to three and 25mm, respectively. Eurocode-4 regulates characteristic relative slip at least 6mm. However, test results show that stud shear connectors embedded in UHPC provide the characteristic relative slip only about 4mm. Therefore, another measures to increase ductility of stud should be prepared.