• Title/Summary/Keyword: structural stabilization

Search Result 162, Processing Time 0.02 seconds

Stable modal identification for civil structures based on a stochastic subspace algorithm with appropriate selection of time lag parameter

  • Wu, Wen-Hwa;Wang, Sheng-Wei;Chen, Chien-Chou;Lai, Gwolong
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.4
    • /
    • pp.331-350
    • /
    • 2017
  • Based on the alternative stabilization diagram by varying the time lag parameter in the stochastic subspace identification analysis, this study aims to investigate the measurements from several cases of civil structures for extending the applicability of a recently noticed criterion to ensure stable identification results. Such a criterion demands the time lag parameter to be no less than a critical threshold determined by the ratio of the sampling rate to the fundamental system frequency and is firstly validated for its applications with single measurements from stay cables, bridge decks, and buildings. As for multiple measurements, it is found that the predicted threshold works well for the cases of stay cables and buildings, but makes an evident overestimation for the case of bridge decks. This discrepancy is further explained by the fact that the deck vibrations are induced by multiple excitations independently coming from the passing traffic. The cable vibration signals covering the sensor locations close to both the deck and pylon ends of a cable-stayed bridge provide convincing evidences to testify this important discovery.

A Comparative Study on the Structural Characteristics of the Stabilized Soils with Ca, Al System Admixtures. (Ca, Al계 안정처리토의 구조적 특성의 비교)

  • Jeong, Du-Yeong;Choe, Gil-Yeol;Lee, Byeong-Seok
    • Geotechnical Engineering
    • /
    • v.2 no.3
    • /
    • pp.5-14
    • /
    • 1986
  • The results of stabilization process in silty.clays and sand-silts, which were, respectively, treated with Calcium hydroxide of the Calcium series and Aluminium Sulphate of the Aluminium series are follows. 1) In the former case used calcium hydrate and calcium cabonate for silty-clays, calcium aluminnium cabonate oxide hydrate and calcium carbonate for sandy-silts were produced 2) In the latter case used Aluminium Sulphate, by X-ray diffraction test, it was found that Aluminium Oxide was produced both in silty-clays and sandy-silts 3) As the results of stabilization process, in the former case, unconfined compression strength was increased greatly but in the latter case it was little increased.

  • PDF

Lock-in and drag amplification effects in slender line-like structures through CFD

  • Belver, Ali Vasallo;Iban, Antolin Lorenzana;Rossi, Riccardo
    • Wind and Structures
    • /
    • v.15 no.3
    • /
    • pp.189-208
    • /
    • 2012
  • Lock-in and drag amplification phenomena are studied for a flexible cantilever using a simplified fluid-structure interaction approach. Instead of solving the 3D domain, a simplified setup is devised, in which 2D flow problems are solved on a number of planes parallel to the wind direction and transversal to the structure. On such planes, the incompressible Navier-Stokes equations are solved to estimate the fluid action at different positions of the line-like structure. The fluid flow on each plane is coupled with the structural deformation at the corresponding position, affecting the dynamic behaviour of the system. An Arbitrary Lagrangian-Eulerian (ALE) approach is used to take in account the deformation of the domain, and a fractional-step scheme is used to solve the fluid field. The stabilization of incompressibility and convection is achieved through orthogonal quasi-static subscales, an approach that is believed to provide a first step towards turbulence modelling. In order to model the structural problem, a special one-dimensional element for thin walled cross-section beam is implemented. The standard second-order Bossak method is used for the time integration of the structural problem.

The Structural Design and Analysis of Spring Stabilizer for Aircraft Surveillance and Reconnaissance EO/IR Equipment (감시정찰 전자광학장비용 스프링 안정화 장치 구조 설계 및 해석 연구)

  • Yoonju Jung;Suhyeon Kim;Sanghyun Nam;Injae Park;Mingyun Park;Taekyun Kim;Hwanseok Yang;Seungwook Park;Seungha Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.5
    • /
    • pp.28-33
    • /
    • 2023
  • In this research, the isolator and the inner gimbal inside of typical EO/IR equipment were replaced with a spring stabilizer. This Spring stabilizer system revealed an internal platform capable of external vibration damping and 6-DOF driving. This system was designed based on machined springs and spring modules of the spring stabilizer, structure, and other fixture. Through modal vibration analysis, suitable material for the spring was determined. Structural stability of the spring stabilization device was determined through random vibration analysis.

Analysis for Mechanical Behavior of GFRP Rock Bolt for Permanent Support of Tunnel (영구 터널지보재로서의 활용을 위한 GFRP 록볼트의 역학적 거동 분석)

  • Sim, Jong-Sung;Kang, Tae-Sung;Lee, Yong-Taek;Kim, Hyun-Joong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.124-131
    • /
    • 2010
  • Rock Bolt generally utilizes deformed reinforcing bar welded from structural steel of which strength is higher than required for making advantageous use of the support function of ground. In the condition with highly corrosive underground water, however, problem frequently occurs on tunnel and slope stabilization in terms of repair, rehabilitation and maintenance issues due to the destruction of Rock Bolt by corrosion of steel. A structural performance evaluation for GFRP Rock Bolt was conducted for the purpose of resolving the foregoing problem and at the same time developing a permanently-usable support material. This study intended to evaluate the safety factor of GFRP Rock Bolt by implementing the slope stability interpretation via structural analysis on the basis of its structural characteristics derived from both tensile force function test and shear force function test. It is judged based on the results that GFRP Rock Bolt would secure sufficient ground stability as an alternative material for existing Steel Rock Bolt.

A Study on the Modal Parameters for Cable System of Bridge (교량 케이블시스템의 모드변수에 관한 연구)

  • Lee, Hyunchol;Jo, Yeong-hoon;Kim, Jinsoo;Park, Kyoungho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.48-59
    • /
    • 2019
  • In recent years, the type of bridge where cables such as suspension bridge and cable-stayed bridge are the main factors in the construction of long-range bridges has been soaring. The effects of cables on these structures are very large, and for structural analysis, it is necessary to study the cable and the structural changes according to the mode characteristics of the cables. In particular, cables are directly connected to camber adjustment, which conveys load effects on girders to tower, and are important components in the overall structure, and since the initial tension on the construction is compared with the tension over time, this study was conducted to help identify the condition of the bridge's aging and abnormalities. Therefore, in this study, the characteristics of the mode from the mode analysis through the impact hammer to the mass of the cable and the change in the length of the cable are analyzed.

SSA-based stochastic subspace identification of structures from output-only vibration measurements

  • Loh, Chin-Hsiung;Liu, Yi-Cheng;Ni, Yi-Qing
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.331-351
    • /
    • 2012
  • In this study an output-only system identification technique for civil structures under ambient vibrations is carried out, mainly focused on using the Stochastic Subspace Identification (SSI) based algorithms. A newly developed signal processing technique, called Singular Spectrum Analysis (SSA), capable to smooth a noisy signal, is adopted for preprocessing the measurement data. An SSA-based SSI algorithm with the aim of finding accurate and true modal parameters is developed through stabilization diagram which is constructed by plotting the identified system poles with increasing the size of data matrix. First, comparative study between different approaches, with and without using SSA to pre-process the data, on determining the model order and selecting the true system poles is examined in this study through numerical simulation. Finally, application of the proposed system identification task to the real large scale structure: Canton Tower, a benchmark problem for structural health monitoring of high-rise slender structures, using SSA-based SSI algorithm is carried out to extract the dynamic characteristics of the tower from output-only measurements.

Modal tracking of seismically-excited buildings using stochastic system identification

  • Chang, Chia-Ming;Chou, Jau-Yu
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.419-433
    • /
    • 2020
  • Investigation of structural integrity has been a critical issue in the field of civil engineering for years. Visual inspection is one of the most available methods to explore deteriorative components in structures. Still, this method is not applicable to invisible damage of structures. Alternatively, system identification methods are capable of tracking modal properties of structures over time. The deviation of these dynamic properties can serve as indicators to access structural integrity. In this study, a modal tracking technique using frequency-domain system identification from seismic responses of structures is proposed. The method first segments the measured signals into overlapped sequential portions and then establishes multiple Hankel matrices. Each Hankel matrix is then converted to the frequency domain, and a temporal-average frequency-domain Hankel matrix can be calculated. This study also proposes the frequency band selection that can divide the frequency-domain Hankel matrix into several portions in accordance with referenced natural frequencies. Once these referenced natural frequencies are unavailable, the first few right singular vectors by the singular value decomposition can offer these references. Finally, the frequency-domain stochastic subspace identification tracks the natural frequencies and mode shapes of structures through quick stabilization diagrams. To evaluate performance of the proposed method, a numerical study is carried out. Moreover, the long-term monitoring strong motion records at a specific site are exploited to assess the tracking performance. As seen in results, the proposed method is capable of tracking modal properties through seismic responses of structures.

Stability Analysis and Reinforcement of Large Excavated Slope considering Precipitation Infiltration in Rainy Season (강우침투로 인한 대절취사면의 붕괴안정성검토 및 대책)

  • Chun, Byung-Sik;Choi, Hyun-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.1
    • /
    • pp.101-110
    • /
    • 2000
  • In case heavy rainfall is a key factor of slope failure, the failure zone is usually developed within the depth of 3~5m from the ground surface regardless of the location of the watertable. If rainfall is taken into consideration, it is general that the slope stability analysis is carried out under the assumption that the cut slope is saturated to the slope surface or the watertable elevates to a certain height so that ${\gamma}_{sat}$, the unit weight of saturated soil, is used. However, the analysis method mentioned above can't exactly simulate the variation of pore water pressure in the slope and yields different failure shape. The applicability of slope stability analysis method considering the distribution of pore water pressure within the slope with heavy rainfalls, was checked out after the stability analysis of a lage-scale cut slope in a highway construction site, where surface failure occurred with heavy rainfalls. An appropriate slope stabilization method is proposed on the base of the outcome of the analysis.

  • PDF

Pigment Influence in High Density Polyethylene Electrical Strength (고밀도 폴리에틸렌에 있어서 전계의 세기의 영향)

  • Yun, Ju-Ho;Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.331-332
    • /
    • 2007
  • In this work, the TiO2 pigment influence in HDPE dielectric strength was analyzed. Chemical and structural characterizations were made to identify changes during the processing and your influence in the electrical properties, formulations containing 0, 0.5, 1, 2.5, 4 and 6 of titanium dioxide were processed by extrusion and injection molding with stabilization-antioxidants, ultraviolet stabilizers and plasticizers. The electrical strength tests were analyzed by the statistical distribution of Weibull, and the maximum likelihood method. The high concentrations present lower values to electrical strength. The parameter could be using to insulator panicles dispersion. The TiO2 concentration variation shows that these incorporations implicate strength values increase has a maximum (5,35MV/cm). High pigment concentration induces a little falls in property values. Observing the parameter, minimum experiment electric field (Ebmin) and electric strength value, found that the best electric perform formulation was the formulation with 2.5% TiO2 weight.

  • PDF