• 제목/요약/키워드: structural safety assessment

검색결과 576건 처리시간 0.023초

건설공사의 안전관리정보시스템 개발 - 아파트공사 중심으로 - (Safety Management Information System in Construction Work - Focus on Apartment Work -)

  • 박종근
    • 한국안전학회지
    • /
    • 제24권6호
    • /
    • pp.124-131
    • /
    • 2009
  • In any form of construction work, it is essential that accidents be prevented at every stage, from foundation preparation to build completion. For this, it is necessary to use models that can assess risk and provide instructions for safe work processes so that the risk of accidents is reduced. Currently, however, very few models can perform these tasks. In this paper, we present a model that assesses risk quantitatively by analyzing the risk factors involved in each stage of construction, such as foundation work, temporary work, structural work, equipment work, and finishing work. The model performs assessment based on examples of accidents and by investigating actual conditions during construction. In addition, we present in this paper a safety management system developed to assess risk during construction and to effectively train laborers.

변위기여도 및 변형에너지밀도를 활용한 초고층 건물의 센싱 부재 선정 (Selection of Sensing Members in a High-rise Building Structures using Displacement Participation Factors and Strain Energy Density)

  • 이홍민;박성우;박효선
    • 한국전산구조공학회논문집
    • /
    • 제22권4호
    • /
    • pp.349-354
    • /
    • 2009
  • 초고층 건물의 안전성 및 사용성을 합리적으로 확보하고 유지하기 위해서 부재의 구조 반응 모니터링은 필요하다. 이러한 대형 건물의 건전도 모니터링은 최근 들어 많은 연구자들에 의해서 관심 되어지고 있지만 건물 특성상 계측 대상 부재가 많고 하중과 구조반응의 관계가 복잡하기 때문에 센싱 부재 선정의 어려움으로 그 적용에 한계가 있다. 본 논문에서는 부재의 변위기여도 및 변형에너지밀도를 기반으로 초고층 건물의 안전성 모니터링을 위한 구조반응 계측 부재 선정에 대한 연구를 수행하였다.

Reliability-based condition assessment of a deteriorated concrete bridge

  • Ghodoosi, Farzad;Bagchi, Ashutosh;Zayed, Tarek;Zaki, Adel R.
    • Structural Monitoring and Maintenance
    • /
    • 제1권4호
    • /
    • pp.357-369
    • /
    • 2014
  • In the existing bridge management systems, assessment of the structural behavior is based on the results of visual inspections in which corresponding condition states are assigned to individual elements. In this process, limited attention is given to the correlation between bridge elements from structural perspective. Also, the uncertainty of parameters which affect the structural capacity is ignored. A system reliability-based assessment model is potentially an appropriate replacement for the existing procedures. The aim of this research is to evaluate the system reliability of existing conventional Steel-Reinforced bridge decks over time. The developed method utilizes the reliability theory and evaluates the structural safety for such bridges based on their failure mechanisms. System reliability analysis has been applied to simply-supported concrete bridge superstructures designed according to the Canadian Highway Bridge Design Code (CHBDC-S6) and the deterioration pattern is achieved based on the reliability estimates. Finally, the bridge condition index of an old existing bridge in Montreal has been estimated using the developed deterioration pattern. The results obtained from the developed reliability-based deterioration model and from the evaluation done by bridge engineers have been found to be in accordance.

A new block assembly method for shipbuilding at sea

  • Zhang, Bilin;Boo, Seung-Hwan;Kim, Jin-Gyun
    • Structural Engineering and Mechanics
    • /
    • 제54권5호
    • /
    • pp.999-1016
    • /
    • 2015
  • In this paper, we introduce a new method for assembly of shipbuilding blocks at sea and present its feasibility focusing on structural safety. The core concept of this method is to assemble ship building blocks by use of bolting, gluing and welding techniques at sea without dock facilities. Due to its independence of dock facilities, shipyard construction capability could be increased considerably by the proposed method. To show the structural safety of this method, a bulk carrier and an oil tanker were employed, and we investigated the structural behavior of those ships to which the new block assembly method was applied. The ship hull models attached with connective parts are analyzed in detail through finite element analyses, and the cargo capacity of the bulk carrier is briefly discussed as well. The results of these studies show the potential for applying this new block assembly method to practical shipbuilding.

Performance-based and damage assessment of SFRP retrofitted multi-storey timber buildings

  • Vahedian, Abbas;Mahini, Seyed Saeed;Glencross-Grant, Rex
    • Structural Monitoring and Maintenance
    • /
    • 제2권3호
    • /
    • pp.269-282
    • /
    • 2015
  • Civil structures should be designed with the lowest cost and longest lifetime possible and without service failure. The efficient and sustainable use of materials in building design and construction has always been at the forefront for civil engineers and environmentalists. Timber is one of the best contenders for these purposes particularly in terms of aesthetics; fire protection; strength-to-weight ratio; acoustic properties and seismic resistance. In recent years, timber has been used in commercial and taller buildings due to these significant advantages. It should be noted that, since the launch of the modern building standards and codes, a number of different structural systems have been developed to stabilise steel or concrete multistorey buildings, however, structural analysis of high-rise and multi-storey timber frame buildings subjected to lateral loads has not yet been fully understood. Additionally, timber degradation can occur as a result of biological decay of the elements and overloading that can result in structural damage. In such structures, the deficient members and joints require strengthening in order to satisfy new code requirements; determine acceptable level of safety; and avoid brittle failure following earthquake actions. This paper investigates performance assessment and damage assessment of older multi-storey timber buildings. One approach is to retrofit the beams in order to increase the ductility of the frame. Experimental studies indicate that Sprayed Fibre Reinforced Polymer (SFRP) repairing/retrofitting not only updates the integrity of the joint, but also increases its strength; stiffness; and ductility in such a way that the joint remains elastic. Non-linear finite element analysis ('pushover') is carried out to study the behaviour of the structure subjected to simulated gravity and lateral loads. A new global index is re-assessed for damage assessment of the plain and SFRP-retrofitted frames using capacity curves obtained from pushover analysis. This study shows that the proposed method is suitable for structural damage assessment of aged timber buildings. Also SFRP retrofitting can potentially improve the performance and load carrying capacity of the structure.

노후 콘크리트 구조물의 실용적 유지관리를 위한 콘크리트 구조물 안전진단 지침 분석 (Analysis of Safety Evaluation Guidelines for Practical Maintenance of Existing Concrete Structures)

  • 이주형;조재열
    • 토지주택연구
    • /
    • 제11권3호
    • /
    • pp.83-92
    • /
    • 2020
  • In South Korea, problems caused by material deterioration of time-worn concrete structures have been increased recently. Because severe material deterioration could damage the structure's safety, it's important to evaluate the old structure's condition and structural capacity regularly to keep its proper performance. The safety evaluation of concrete structures has been initiated and performed periodically since 1995 according to a guideline in accordance with a law in Korea. The guideline prescribes the evaluation types, intervals and methods of the target structure. A lot of cost and labor have been invested every year to carry out the regular safety evaluation. However, it's not clear that the current manual could inspect the old structure's condition and assess the structural capacity precisely. Thus, the verification study initiated to figure out the Korean safety evaluation manual's practicalness. First, the Korean manual was analyzed and then compared with that of other countries for concrete bridges which are representative concrete structure. After that, the previously written evaluation reports were collected and analyzed to find out how the safety evaluation has been carried out. Based on the study results, the parts requiring verification of the manual were drawn. A research program is in progress in order to verify the parts by performing tests with actual structural members from decommissioned concrete bridges.

Engineering critical assessment of RPV with nozzle corner cracks under pressurized thermal shocks

  • Li, Yuebing;Jin, Ting;Wang, Zihang;Wang, Dasheng
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2638-2651
    • /
    • 2020
  • Nozzle corner cracks present at the intersection of reactor pressure vessels (RPVs) and inlet or outlet nozzles have been a persistent problem for a number of years. The fracture analysis of such nozzle corner cracks is very important and critical for the efficient design and assessment of the structural integrity of RPVs. This paper aims to perform an engineering critical assessment of RPVs with nozzle corner cracks subjected to several transients accompanied by pressurized thermal shocks. The critical crack size of the RPV model with nozzle corner cracks under transient loading is evaluated on failure assessment curve. In particular, the influence of cladding on the crack initiation of nozzle corner crack under thermal transients is studied. The influence of primary internal pressure and secondary thermal stress on the stress field at nozzle corner and SIF at crack front is analyzed. Finally, the influence of different crack size and crack shape on the final critical crack size is analyzed.

Recent Advances in Structural Health Monitoring

  • Feng, Maria Q.
    • 비파괴검사학회지
    • /
    • 제27권6호
    • /
    • pp.483-500
    • /
    • 2007
  • Emerging sensor-based structural health monitoring (SHM) technology can play an important role in inspecting and securing the safety of aging civil infrastructure, a worldwide problem. However, implementation of SHM in civil infrastructure faces a significant challenge due to the lack of suitable sensors and reliable methods for interpreting sensor data. This paper reviews recent efforts and advances made in addressing this challenge, with example sensor hardware and software developed in the author's research center. It is proposed to integrate real-time continuous monitoring using on structure sensors for global structural integrity evaluation with targeted NDE inspection for local damage assessment.

지상 LiDAR를 이용한 철골보의 안전 및 사용성 모니터링을 위한 변위 계측기법 (Displacement Measuring Method using Terrestrial LiDAR for Safety and Serviceability Monitoring of Steel Beams)

  • 이홍민;박효선;이임평
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.190-197
    • /
    • 2005
  • To monitor the safety and serviceability of a structures, structural responses including displacements due to various design and unexpected loadings must be measured. The maximum displacement and its distributions of a structure can be used as a direct assessment index on its stiffness. For this reason, there have been diversely studied on measuring of the maximum displacement of a structure. However, there is no practical method for measuring displacement of a structure. Therefore, in this paper, new displacement measuring method is developed and accuracy of LiDAR is examined in detail for development of a new method for measuring displacement of a structure.

  • PDF

라이다를 이용한 고층 건물의 변위 계측 기법에 관한 연구 (A Study on the Displacement Measuring Method of High-rise Buildingas using LiDAR)

  • 이홍민;박효선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.151-158
    • /
    • 2006
  • Structural health monitoring is concerned with the safety and serviceability of the users of structures, especially for the case of building structures and infrastructures. When considering the safety of a structure, the maximum stress in a member due to live load, earthquake, wind, or other unexpected loadings must be checked not to exceed the stress specified in a code. It will not fail at yield, excessively large displacements will deteriorate the serviceability of a structure. To guarantee the safety and serviceability of structures, the maximum displacement in a structures must be monitored because actual displacement is a direct assessment index on its stiffness. However, no practical method has been reported to monitor the displacement, especially for the case of displacement of high-rise buildings because of not to easy accessive. In this paper, it is studied displacement measuring method of high-rise buildings using LiDAR The method is evaluated by analyzing accuracy of measured displacements for existing building.

  • PDF