• Title/Summary/Keyword: structural safety

Search Result 4,448, Processing Time 0.041 seconds

A Study on the Structural Analysis for Plastic Door Handle of Automobile (플라스틱 자동차 손잡이 구조물의 구조해석에 관한 연구)

  • Park, S.R.;Shim, D.C.;Kim, D.;Lyu, M.Y.
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.185-190
    • /
    • 2010
  • Application of CAE analyses are wide spread in shaping processes and structural safety verification of plastic products. The importance of CAE analysis and its contributions are getting increase since the processibility and structural safety of product can be predicted. CAE analysis for complex shaped product need a lot of time for modeling and computation compare with simpler one. Therefore careful simulation modeling is required for complex shaped product. Structural analysis for plastic door handle of automobile has been performed and structural safety has been investigated for various load directions and modeling cases. Large stress occurred at the hinge in handle regardless of load direction and modeling case. Consequently hinge is considered structurally very weak among the parts in plastic door handle. It is concluded that simple modeling rather than total modeling with adequate boundary condition equivalent to real situation gives reasonable computational results with saving modeling effort and computation time.

Fractal behavior identification for monitoring data of dam safety

  • Su, Huaizhi;Wen, Zhiping;Wang, Feng
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.529-541
    • /
    • 2016
  • Under the interaction between dam body, dam foundation and external environment, the dam structural behavior presents the time-varying nonlinear characteristics. According to the prototypical observations, the correct identification on above nonlinear characteristics is very important for dam safety control. It is difficult to implement the description, analysis and diagnosis for dam structural behavior by use of any linear method. Based on the rescaled range analysis approach, the algorithm is proposed to identify and extract the fractal feature on observed dam structural behavior. The displacement behavior of one actual dam is taken as an example. The fractal long-range correlation for observed displacement behavior is analyzed and revealed. The feasibility and validity of the proposed method is verified. It is indicated that the mechanism evidence can be provided for the prediction and diagnosis of dam structural behavior by using the fractal identification method. The proposed approach has a high potential for other similar applications.

Evaluation on Structural Safety for Carbon-Epoxy Composite Wing and Tail Planes of the 1.2 Ton Class WIG

  • Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • In the present study, structural safety and stability on the main wing and tail planes of the 1.2 ton WIG(Wing in Ground Effect) flight vehicle, which will be a high speed maritime transportation system for the next generation, was performed. The carbon-epoxy composite material was used in design of wing structure. The skin-spar with skin-stressed structural type was adopted for improvement of lightness and structural stability. As a design procedure for this study, the design load was estimated with maximum flight load. From static strength analysis results using finite element method of the commercial codes. From the stress analysis results of the main wing, it was confirmed that the upper skin structure between the second rib and the third rib was unstable for the buckling load. Therefore in order to solve this problem, three stiffeners at the buckled region were added. After design modification, even though the weight of the wing was a little bit heavier than the target weight, the structural safety and stability was satisfied for design requirements.

Structural Analysis of Hammering System for Pine Cone Harvest using Industrial Drone (산업용 드론을 이용한 잣수확용 해머링 시스템의 구조해석)

  • Ki-Hong Kim;Dae-Won Bae;Won-Sik Choi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.2_2
    • /
    • pp.285-291
    • /
    • 2023
  • In this paper, in order to secure the safety and productivity of pine cone harvest, modeling and structural analysis of the hammering system for pine cone harvest drone that can easily access pine cone of Pinus koraiensis and collide with them to harvest them was performed. It calculate the equivalent stress for the structure of the hammering system and the yield strength of the applied material by applying the shear force of the stalk at which the pine cone is separated from the branch, and it is to verify the safety of the structure and propose an optimal design through appropriate factor of safety and design change. The shear force of the stalk at which the pine cone was separated from the branch was 468 N, and was applied to both ends of the hammering system. The yield strength of SS400 steel used in the hammering system is 245 ㎫, and the design change and structural analysis were performed so that the Von Mises stress could be less than 122.5 ㎫ by applying the factor of safety of 2.0 or more. As a result of the structural analysis of the frist modeling, the Von Mises stress was 220.3 ㎫, the factor of safety was 1.12, and the stress was concentrated in the screw fastening holes. As a result of the design change of the screw fastening holes, the Von Mises stress was 169.4 ㎫, the factor of safety was 1.45, and the stress was concentrated on the side part. As a result of the design change by changing screw fastening holes and adding ribs, the Von Mises stress was 121.6 ㎫, and the factor of safety was 2.02. The safety of the hammering system was secured with an optimal design with little change in mass. There was no deformation or damage as a result of experimenting on pine cone harvest by manufacturing the hammering system with an optimal design.

Evaluation of Structural Performance and Dynamic Characteristics of Korean Traditional Timber Structure Sungnyemun (한국 전통 목조건축 숭례문의 구조성능 및 동적특성 평가)

  • Kim, Yeong-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.607-614
    • /
    • 2015
  • In this research, the structural analysis and safety evaluation for Sungnyemun -No.1 national treasure of Korea- was performed. Roof loads were calculated in detail, and structural analysis model was constructed using Midas Gen ver.820. Static structural analysis under vertical loads was performed and safety of main structural members and serviceability of main horizontal members were evaluated. To evaluate dynamic characteristics of Sungnyemun, both field measurements by impact hammer test and eigenvalue analysis by structural analysis software were performed and the results were compared. Sungnyemun showed rooms in their structural capacity.

A Study on the Structural Safety Analysis for Vinyl House at Snow Load (비닐하우스의 적설하중 구조안전성 검토에 관한 연구)

  • Paik, Shinwon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.2
    • /
    • pp.34-39
    • /
    • 2019
  • Vinyl house consists of main rafter, lateral member, clamps and polyethylene film. Many vinyl houses are used in the countryside to grow vegetables. These vinyl houses have occasionally been collapsed due to heavy snowfall in winter. Many farmers get a lot of economical damages, if vinyl houses are collapsed. So it is most important to built a safe vinyl house that can withstand heavy snowfall. In this study, a structural analysis was performed on three types of vinyl houses(07-single-01, 10-single-04, 12-single-01). In addition, the structural analysis of the three types of vinyl houses provided axial forces, flexural moment, and combined stress. For these three types of vinyl houses, structural safety was reviewed by obtaining the combined stress ratio by the strength design method. This structural review showed that the specifications for the vinyl house proposed in the design are not safe. Especially, the result of increasing the design snow load by 15 percent and 30 percent showed that the vinyl house structure constructed as a standard for vinyl house was a more dangerous structure. Therefore, it is necessary to revise regulations such as increasing the thickness of rafters or widening the gap in order to make vinyl houses structurally safe for heavy snowfall in the future, and to devise diverse methods to make vinyl houses that are structurally safe.

Development of Chatbot Self-Inspection Scenario for Structural Safety of Existing Reinforced Concrete Buildings (챗봇 활용 철근콘크리트 건축물 구조안전 자가점검 시나리오 개발에 관한 연구)

  • Yang, Jaekwang;Kang, Taewook;Shin, Jiuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.331-337
    • /
    • 2023
  • Due to the aging of a building, 38.8% (about 2.82 million buildings) of the total buildings are old for more than 30 years after completion and are located in a blind spot for an inspection, except for buildings subject to regular legal inspection (about 3%). Such existing buildings require users to self-inspect themselves and make efforts to take preemptive risks. The scope of this study was defined as the general public's visual self-inspection of buildings and was limited to structural members that affect the structural stability of old buildings. This study categorized possible damage to reinforced concrete to check the structural safety of buildings and proposed a checklist to prevent the damage. A damage assessment methodology was presented during the inspection, and a self-inspection scenario was tested through a chatbot connection. It is believed that it can increase the accessibility and convenience of non-experts and induce equalized results when performing inspections, according to the chatbot guide.

Effects of Job Satisfaction, Organizational Support and Risk Perception on Safety Consciousness in Confined Space Workers

  • Kim, Yang Rae;Jeong, Byung Yong;Park, Myoung Hwan
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.245-254
    • /
    • 2017
  • Objective: This study aims to investigate the effects of organizational support, risk perception and job satisfaction on safety consciousness in confined space works. Background: Confined space works are rated as hazardous works with high injury frequency and fatalities. But there were few researches for the occupational injury of the confined space workers. Method: Questionnaire survey targeting 236 workers working in confined spaces were carried out to construct the structural equation model on safety consciousness. The participants were all male workers, and they install and maintain or clean facilities mainly in the confined spaces. Results: A structural equation model for safety consciousness was proposed, and validated based on perceived organizational support, risk perception and job satisfaction factors. Perceived 'organizational support' contributed significantly to 'worker's safety consciousness' both directly and indirectly. Also, perceived 'worker's safety consciousness' was also affected by perceived 'job satisfaction' and 'risk perception'. In terms of magnitude of relationships, the direct effect of perceived 'job satisfaction' on 'worker's safety consciousness' was the greatest among the interrelationships among latent factors. Conclusion: Workers' safety consciousness can function as a leading indicator for safety and hazard prevention of workers. Application: The results can be used in developing safety prevention programs for confined space workers.

Space Efficiency and Structural Safety of Eryngii Cultivation House (새송이 버섯 재배사의 공간효율 및 구조안전 검토)

  • Kwon, Jin-Keun;Suh, Won-Myung;Yoon, Yong-Cheol
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.351-354
    • /
    • 2003
  • This study was carried out to set up design criteria of Eryngii cultivation houses. Optimization of lay-out efficiency together with analysis of structural safety were two main tools of approaching toward reasonable models to be developed. Some models tentatively assumed according to the result of field survey and analysis were compared in the aspect of structural safety as well as energy efficiency.

  • PDF

A Study on Fire Resisting Construction Design in Advanced Nation (선진각국의 내화설계법에 관한 연구)

  • 김화중
    • Fire Science and Engineering
    • /
    • v.2 no.2
    • /
    • pp.17-30
    • /
    • 1988
  • In Our Country, the fire safety design is done by the standard furnace fire test. This is haphazard procedure, as the standard furnace fire endurance of structural elements has little relation to the structural element endurance in an actual Compartment fire. The standard furnace fire test results, though obtained at great cost, do not contribute to the understanding of the behavior of structural elements in an elevated temperature environment and can not be applied rationally in fire safety design. The response of a steel and reinforced concrete structure in fire is a very complex problem. Therefore, in this paper is explained about tendency of study for fire safety design in advanced nations.

  • PDF