• Title/Summary/Keyword: structural rules

Search Result 347, Processing Time 0.024 seconds

Investigating Structural Stability and Constructability of Buildings Relative to the Lap Splice Position of Reinforcing Bars

  • Widjaja, Daniel Darma;Rachmawati, Titi Sari Nurul;Kwon, Keehoon;Kim, Sunkuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.315-326
    • /
    • 2023
  • The design principles and implementation of rebar lap splice in architectural structures are governed by building regulations. Nevertheless, the minimization of rebar-cutting waste (RCW) is often impeded by the mandatory requirements pertaining to the rebar lapping zone as prescribed in design codes. In real-world construction scenarios, compliance with these rules often falls short due to hurdles concerning productivity, quality, safety, time, and cost. This discrepancy between code stipulations and on-the-ground construction practices necessitates an academic exploration. The goal of this research was to delve into the effect of rebar lap splice placement on the robustness and constructability of building edifices. The study initially took on a review of the computation of rebar lapping length and the rules revolving around the lapping zone. Following this, a structural robustness and constructability examination was undertaken, focusing on adherence to the lap splice zone. The interpretations and deductions of the research led to the following insights: (1) the efficacy of rebar lap splice is not solely contingent on the moment, and (2) the implementation of rebar lap splice beyond the specified zone can match the structural integrity and robustness of those confined within the designated area. As a result, the constraints on the rebar lapping zone ought to be revisited and possibly relaxed. The conclusions drawn from this research are anticipated to reconcile the disconnect between building codes and practical construction conditions, furnishing invaluable academic substantiation to further the endeavor of achieving near-zero RCW.

Effect of cross-beam on stresses revealed in orthotropic steel bridges

  • Fettahoglu, Abdullah
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.149-163
    • /
    • 2015
  • Orthotropic steel highway bridges exist almost everywhere in world, especially in Europe. The design of these bridges started very early in 20th century and ended with a conventional orthotropic steel bridge structure, which is today specified in DIN FB 103. These bridges were mostly built in 1960's and exhibit damages in steel structural parts. The primary reason of these damages is the high pressure that is induced by wheel- loads and therefore damages develop especially in heavy traffic lanes. Constructive rules are supplied by standards to avoid damages in orthotropic steel structural parts. These rules are first given in detail in the standard DIN 18809 (Steel highway- and pedestrian bridges- design, construction, fabrication) and then in DIN- FB 103 (Steel bridges). Bridges built in the past are today subject to heavier wheel loads and the frequency of loading is also increased. Because the vehicles produced today in 21st century are heavier than before and more people have vehicle in comparison with 20th century. Therefore dimensioning or strengthening of orthotropic steel bridges by using stiffer dimensions and shorter spans is an essence. In the scope of this study the complex geometry of conventional steel orthotropic bridge is generated by FE-Program and the effects of cross beam web thickness and cross beam span on steel bridge are assessed by means of a parameter study. Consequently, dimensional and constructional recommendations in association with cross beam thickness and span will be given by this study.

A Design Support System for the Structural Design of Ships Based on an Expert System Development Shell (범용 전문가시스템 쉘을 이용한 선박의 구조설계 지원 시스템)

  • Han, Soon-Hung;Lee, Kyung-Ho;Lee, Dong-Kon;Kim, Eun-Ki;Lee, Kyu-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.2
    • /
    • pp.83-93
    • /
    • 1993
  • Conventional computer programs developed and used by practicing engineers can be considered to contain expert knowledge and design experience. If these conventional programs are converted into expert systems, the difficult and time consuming process of knowledge acquisition can be simplified. Also the constructed knowledge-base can have higher confidence level than that constructed by the usual knowledge acquisition method of interviews. An existing computer program which is being used by ship structural designers has been reformulated as a design expert system by applying an expert system development shell-Nexpert. Utilizing the callable interface provided by the development shell, external design tools have also been integrated. The interfaced external functions are a graphical user interface (GUI) for the design process control, and graphics functions for the visualization of design results. It is observed that the developed system for design support is useful in two aspects. The trace-back function shows what portion of design rules are applied in arriving at certain design decisions. Also the knowledge-base can be conveniently updated as design rules of the classification societies are updated.

  • PDF

Investigation of cold-formed stainless steel non-slender circular hollow section columns

  • Ellobody, Ehab;Young, Ben
    • Steel and Composite Structures
    • /
    • v.7 no.4
    • /
    • pp.321-337
    • /
    • 2007
  • The investigation on the behaviour of cold-formed stainless steel non-slender circular hollow section columns is presented in this paper. The normal strength austenitic stainless steel type 304 and the high strength duplex materials (austenitic-ferritic approximately equivalent to EN 1.4462 and UNS S31803) were considered in this study. The finite element method has been used to carry out the investigation. The columns were compressed between fixed ends at different column lengths. The geometric and material nonlinearities have been included in the finite element analysis. The column strengths and failure modes were predicted. An extensive parametric study was carried out to study the effects of normal and high strength materials on cold-formed stainless steel non-slender circular hollow section columns. The column strengths predicted from the finite element analysis were compared with the design strengths calculated using the American Specification, Australian/New Zealand Standard and European Code for cold-formed stainless steel structures. The numerical results showed that the design rules specified in the American, Australian/New Zealand and European specifications are generally unconservative for the cold-formed stainless steel non-slender circular hollow section columns of normal and high strength materials, except for the short columns and some of the high strength stainless steel columns. Therefore, different values of the imperfection factor and limiting slenderness in the European Code design rules were proposed for cold-formed stainless steel non-slender circular hollow section columns.

Behavior of CFS built-up battened columns: Parametric study and design recommendations

  • Vijayanand, S;Anbarasu, M
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.381-394
    • /
    • 2020
  • The structural performance of cold-formed steel (CFS) built-up battened columns were numerically investigated in this paper. The built-up column sections were formed by connecting two-lipped channels back-to-back, with a regular spacing of battens plates, and have been investigated in the current study. Finite element models were validated with the test results reported by the authors in the companion paper. Using the validated models, the parametric study was extended, covering a wider range of overall slenderness to assess the accuracy of the current design rules in predicting the design strengths of the CFS built-up battened columns. The parameters viz., overall slenderness, different geometries, plate slenderness (b/t ratio) and yield stress were considered for this study. In total, a total of 228 finite element models were analyzed and the results obtained were compared with current design strength predicted by Effective Width Method of AISI Specifications (AISI S100:2016) and European specifications (EN1993-1-3:2006). The parametric study results indicated that the current design rules are limited in predicting the accuracy of the design strengths of CFS built-up battened columns. Therefore, a design equation was proposed for the AISI and EC3 specifications to predict the reliable design strength of the CFS Built-up battened columns and was also verified by the reliability analysis.

A generalized ANFIS controller for vibration mitigation of uncertain building structure

  • Javad Palizvan Zand;Javad Katebi;Saman Yaghmaei-Sabegh
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.231-242
    • /
    • 2023
  • A novel combinatorial type-2 adaptive neuro-fuzzy inference system (T2-ANFIS) and robust proportional integral derivative (PID) control framework for intelligent vibration mitigation of uncertain structural system is introduced. The fuzzy logic controllers (FLCs), are designed independently of the mathematical model of the system. The type-1 FLCs, have a limited ability to reduce the effect of uncertainty, due to their fuzzy sets with a crisp degree of membership. In real applications, the consequent part of the fuzzy rules is uncertain. The type-2 FLCs, are robust to the fuzzy rules and the process parameters due to the fuzzy degree of membership functions and footprint of uncertainty (FOU). The adaptivity of the proposed method is provided with the optimum tuning of the parameters using the neural network training algorithms. In our approach, the PID control force is obtained using the generalized type-2 neuro-fuzzy in such a way that the stability and robustness of the controller are guaranteed. The robust performance and stability of the presented framework are demonstrated in a numerical study for an eleven-story seismically-excited building structure combined with an active tuned mass damper (ATMD). The results indicate that the introduced type-2 neuro-fuzzy PID control scheme is effective to attenuate plant states in the presence of the structured and unstructured uncertainties, compared to the conventional, type-1 FLC, type-2 FLC, and type-1 neuro-fuzzy PID controllers.

Numerical investigation on beams prestressed with FRP

  • Pisani, Marco A.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.4
    • /
    • pp.349-364
    • /
    • 2000
  • This paper aims to make a contribution to understanding which methods apply for structural analysis of beams prestressed with FRP cables. A parametric non-linear numerical analysis of simply supported beams has been performed. In this analysis the shape of the cross-section, the strength of concrete, the material adopted for the cables (steel, GFRP, CFRP), the prestressing system (bonded or unbonded prestressing) and the degree of prestressing were changed to collect a broad range of data which, the author contends, should cover the most frequent types of common practice. The output data themselves and their comparison allow us to suggest some rules that could be adopted when dealing with beams prestressed with these innovatory materials that have an elastic-brittle behaviour.

Numerical study on the structural response of energy-saving device of ice-class vessel due to impact of ice block

  • Matsui, Sadaoki;Uto, Shotaro;Yamada, Yasuhira;Watanabe, Shinpei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.367-375
    • /
    • 2018
  • The present paper considers the contact between energy-saving device of ice-class vessel and ice block. The main objective of this study is to clarify the tendency of the ice impact force and the structural response as well as interaction effects of them. The contact analysis is performed by using LS-DYNA finite element code. The main collision scenario is based on Finnish-Swedish ice class rules and a stern duct model is used as an energy-saving device. For the contact force, two modelling approaches are adopted. One is dynamic indentation model of ice block based on the pressure-area curve. The other is numerical material modelling by LS-DYNA. The authors investigated the sensitivity of the structural response against the ice contact pressure, the interaction effect between structure and ice block, and the influence of eccentric collision. The results of these simulations are presented and discussed with respect to structural safety.

FEASIBILITY OF AN INTEGRATED STEAM GENERATOR SYSTEM IN A SODIUM-COOLED FAST REACTOR SUBJECTED TO ELEVATED TEMPERATURE SERVICES

  • Koo, Gyeong-Hoi;Lee, Jae-Han
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1115-1126
    • /
    • 2009
  • As one of the ways to enhance the economical features in sodium-cooled fast reactor development, the concept of an integrated steam generator and pump system (ISGPS) is proposed from a structural point of view. And the related intermediate heat transfer system (IHTS) piping layout compatible with the ISGPS is described in detail. To assure the creep design lifetime of 60 years, the structural integrity is investigated through high temperature structural evaluation procedures by the SIE ASME-NH computer code, which implements the ASME-NH design rules. From the results of this study, it is found that the proposed ISGPS concept is feasible and applicable to a commercial SFR design.

Numerical Simulation of Structural Response in Bow Collision (1st Report) (선수 충돌시 구조 붕괴 거동에 대한 수치해석(제1보))

  • 박명규
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.28-35
    • /
    • 2000
  • In this paper a complicated structural behavior in collision and its effect of energy transmission to the collision bulkhead was examined through a methodology of the numerical simulation to obtain a ideal bow construction and a location of collision bulkhead against heat on collision. At present the bow structure is normally designed in consideration of its specific structural arrangement and internal and external loads in these areas such as hydrostatic and dynamic pressure wave impact and bottom slamming in accordance with the Classification rules and the specific location of collision bulkhead by SOLAS requirement. By these studies the behavior of the bow collapse due to collision was synthetically evaluated for the different size of tankers and its operational speed limits and by the results of these simulation it provides the optimal design concept for the bow construction to prevent the subsequent plastic deformation onto or near to the collision bulkhead boundary and to determine the rational location of collision bulkhead.

  • PDF