• Title/Summary/Keyword: structural risk analysis

검색결과 552건 처리시간 0.025초

Computer modelling of fire consequences on road critical infrastructure - tunnels

  • Pribyl, Pavel;Pribyl, Ondrej;Michek, Jan
    • Structural Monitoring and Maintenance
    • /
    • 제5권3호
    • /
    • pp.363-377
    • /
    • 2018
  • The proper functioning of critical points on transport infrastructure is decisive for the entire network. Tunnels and bridges certainly belong to the critical points of the surface transport network, both road and rail. Risk management should be a holistic and dynamic process throughout the entire life cycle. However, the level of risk is usually determined only during the design stage mainly due to the fact that it is a time-consuming and costly process. This paper presents a simplified quantitative risk analysis method that can be used any time during the decades of a tunnel's lifetime and can estimate the changing risks on a continuous basis and thus uncover hidden safety threats. The presented method is a decision support system for tunnel managers designed to preserve or even increase tunnel safety. The CAPITA method is a deterministic scenario-oriented risk analysis approach for assessment of mortality risks in road tunnels in case of the most dangerous situation - a fire. It is implemented through an advanced risk analysis CAPITA SW. Both, the method as well as the resulting software were developed by the authors' team. Unlike existing analyzes requiring specialized microsimulation tools for traffic flow, smoke propagation and evacuation modeling, the CAPITA contains comprehensive database with the results of thousands of simulations performed in advance for various combinations of variables. This approach significantly simplifies the overall complexity and thus enhances the usability of the resulting risk analysis. Additionally, it provides the decision makers with holistic view by providing not only on the expected risk but also on the risk's sensitivity to different variables. This allows the tunnel manager or another decision maker to estimate the primary change of risk whenever traffic conditions in the tunnel change and to see the dependencies to particular input variables.

쌍대비교행렬 분석 기법을 적용한 스마트 자동 인상 시스템의 성능 분석 (Performance Analysis of Smart Automatic Jack-Up System Using the Pairwise Comparison Matrix Analysis Method)

  • 김성조;지용수;김봉식;한동석
    • 한국전산구조공학회논문집
    • /
    • 제35권1호
    • /
    • pp.9-14
    • /
    • 2022
  • 본 논문에서는 유지보수를 위한 구조물 인상 시 위험도 분석을 수행하여 안전사고를 방지할 수 있는 스마트 자동 인상 시스템을 개발하였다. 쌍대비교행렬 분석 기법을 활용하여 위험도를 분석할 수 있는 정량적 위험도 분석 프로그램을 개발하였고, 이를 자동 인상시스템과 연계하여 구조물 인상과 동시에 실시간으로 위험도 분석을 하였다. 자동 인상 시스템의 구성요소 중 거리측정센서로 구조물 인상 시의 변위를 측정하고, 측정된 변위는 정량적 위험도 분석 프로그램에 입력되어 위험도를 분석한다. 개발한 스마트 자동 인상 시스템의 성능을 확인하기 위해 실제 교량을 대상으로 실험을 수행하였으며, 구조물 인상과 동시에 위험도 분석이 가능한지를 확인하였다. 스마트 자동 인상 시스템의 성능을 평가하기 위해 인상실험 시 검증된 LVDT(linear variable differential transformer)를 함께 설치하였으며 거리측정센서와 LVDT로 측정되는 변위로 최대 인상량과 구역별 단차를 분석하였다. 인상장치의 동시 작동에 대한 성능을 통계적 분석방법인 분산분석(analysis of variance) 방법을 이용하여 성능을 검증하였다.

충돌위험분배모델을 이용한 해상교량의 설계선박 선정 (Design Vessel Selection of Maritime Bridges using Collision Risk Allocation Model)

  • 이성로;이병화;배용귀;신호상
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권3호
    • /
    • pp.123-134
    • /
    • 2006
  • 본 연구에서는 해상교량의 선박충돌 해석을 위한 설계선박을 결정하기 위한 선박충돌 위험도 분석을 수행하였다. 확률기반 해석과정을 포함하는 Method II를 이용하여 선박충돌 위험도 해석결과로부터 선박충돌에 대한 설계선박을 선정하였다. 계산연간파괴빈도와 허용기준을 반복 비교하는 해석과정에서는 연간파괴빈도 허용기준의 분배방법이 포함된다. 주탑집중 분배방법이 주탑에 비해 과대평가되는 교각의 설계 수평내하력을 적절히 수정할 경우에는 보다 경제적인 결과를 가져오지만, 교량부재의 중요도를 고려한 가중치에 의한 분배방법이 설계인자의 특성들을 정량적으로 고려하기 때문에 보다 합리적인 것으로 보인다. 선박충돌에 노출된 교각 각각에 대한 선박충돌위험도 평가로부터 교량의 대표 설계선박이 선정되었다. 설계선박은 같은 교량에서도 선박통행량 특성에 따라 많은 차이가 있다.

확률론적 위험도평가를 위한 베이지안 기반의 파손확률 추정 모델링 연구 (A Study on the Modeling of PoF Estimation for Probabilistic Risk Assessment based on Bayesian Method)

  • 김근원;신대한;최주호;신기수
    • 한국항공우주학회지
    • /
    • 제41권8호
    • /
    • pp.619-624
    • /
    • 2013
  • 확률론적 수명예측은 파라미터들의 불확실성에 대하여 확률론적인 요소를 적용한다. 따라서 기존의 결정론적 수명해석 기법에 확률론적 기법을 적용하기 위해서는 파손확률을 이용한 위험도 평가가 필요하다. 본 연구에서는 항공기 구조물의 확률론적 위험도평가를 수행하기 위하여 파손확률 추정 모델링 기법을 연구하였다. 이를 위해 파라미터들의 확률론적 불확실성을 효과적으로 반영할 수 있는 베이지안 기법을 이용하여 파손확률을 모델링하고 실험 데이터를 이용하여 검증하였다. 연구결과 베이지안 기반의 파손확률 추정 모델링은 정량적인 파손확률을 계산하고 확률론적 위험도평가를 효과적으로 수행할 수 있음을 입증하였다.

Seismic assessment of a R/C strategic existing building

  • Mehani, Youcef;Kibboua, Abderrahmane
    • Structural Engineering and Mechanics
    • /
    • 제26권6호
    • /
    • pp.617-634
    • /
    • 2007
  • Algeria is a country with a high seismic activity. During the last decade, many destructive earthquakes occurred, particularly in the northern part, causing enormous losses in human lives, buildings and equipments. In order to reduce this risk in the capital and avoid serious damages to the strategic existing buildings, the government decided to invest into seismic upgrade, strengthening and retrofitting of these buildings. In doing so, seismic vulnerability study of this category of buildings has been considered. Structural analysis is performed on the basis of site investigation (inspection of the building, collecting data, materials, general conditions of the building, etc), and existing drawings (architectural plans, structural design, etc). The aim of these seismic vulnerability studies is to develop guidelines and a methodology for rehabilitation of existing buildings. This paper will provide insight to the vulnerability assessment and strengthening of the telecommunication centre, according to the new code RPA 99/version 2003. Both, static equivalent method and non linear dynamic analysis are performed in this study.

The comparison of sectional damages in reinforced-concrete structures and seismic parameters on regional Basis; a case study from western Türkiye (Aegean Region)

  • Ercan Isik;Hakan Ulutas;Aydin Buyuksarac
    • Earthquakes and Structures
    • /
    • 제24권1호
    • /
    • pp.37-51
    • /
    • 2023
  • Türkiye has made significant changes and updates in both seismic risk maps and design codes over time, as have other countries with high seismic risk. In this study, the last two seismic design codes and risk maps were compared for the Aegean Region (Western Türkiye) where the earthquake risk has once again emerged with the 2020 Izmir Earthquake (Mw=6.9). In this study, information about the seismicity of the Aegean Region was given. The seismic parameters for all provinces in the region were compared with the last two earthquake risk maps. The spectral acceleration coefficients of all provinces have increased and differentiated with the current seismic hazard map as a result of the design spectra used on a regional basis have been replaced by the geographical location-specific design spectra. In addition, section damage limits were obtained for all provinces within the scope of the last two seismic design codes. Structural analyses for a sample reinforced-concrete building were made separately for each province using pushover analysis. The deformations in the cross-sections were compared with the limit states corresponding to the damage levels specified in the last two seismic design codes for the region. Target displacement requests for all provinces have decreased with the current code. The differentiation of geographical location-specific design spectra both in the last two seismic design code and between provinces has caused changes in section damages and building performance levels. The main aim of this study is to obtain and compare both seismic and structural analysis results for all provinces in the Aegean Region (Western Türkiye).

Examining Change Order Reasons for Non-Structural Utility Support Projects in Healthcare Facilities

  • Genota, Naomi P.;Kim, Joseph J.
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.188-195
    • /
    • 2022
  • Although issuing change orders is a common practice in the construction phase of any project, non-structural utility subcontractors are struggling and seek to find a way to reduce change orders. Therefore, this paper presents the analysis results on change orders to cultivate possible suggestions and solutions on how to reduce or minimize change orders in mechanical, electrical, and plumbing (MEP) works. Change orders in non-structural utility works are analyzed based on six categories such as rerouting and change of location, changes in weight, rejected design by Office of Statewide Health Planning and Development, District Structural Engineer, or the Structural Engineer of Record, unforeseen conditions, changed equipment, and owner-initiated change. The analysis findings showed that rerouting and changing location is the most significant cause, followed by unforeseen conditions. The results not only contribute to the existing body of knowledge on change order research area, but also help MEP contractors reduce the time and cost of change orders.

  • PDF

3축 로드 시뮬레이터의 구조 및 동적 해석 (Structural and Dynamic Analysis of Three-Axis Road Simulator)

  • 황성호;김화진;박창수;최경락
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.105-111
    • /
    • 2003
  • The three-axis road simulator is the test equipment which can simulate the standardized road conditions for the durability evaluation of automotive components such as suspensions. The road load data are collected and acquired from a vehicle test, and then these data are used to simulate road load conditions by the road simulator which consists of hydraulic actuators, link mechanism and servo controller. The link mechanism must be designed in consideration of the dynamic effect and interference during three axes motions in order to generate accurate motions. In this paper, the structural and kinematic analysis of the link mechanism is performed, and these results can be used for developing the three-axis road simulator. The three-axis road simulator provides considerable savings in cost, development time, and testing risk during developing automotive components.

흐름 경사면의 경사도에 따른 토석류 흐름의 특성 분석 (Analysis of Characteristic of Debris Flow with Angle of Slope)

  • 이준선;송창근;이승오
    • 한국안전학회지
    • /
    • 제31권2호
    • /
    • pp.49-56
    • /
    • 2016
  • In Korea, there exist many mountains, and sudden storms occur during the summer season. When severe rainstorm events occur in steep slope topography, risk of debris flow is increased. Once debris flow occurs in urban area, it may cause casualties and physical damages due to rapid debris flow velocity along a steep slope. Accordingly, preventing method of sediment-related disaster for demage mitigation are essential. Recently, various studies on debris flow have been conducted. However, the prediction of the physical propagation of debris flow along the steep slope was not thoroughly investigated. Debris flow is characterized by various factors such as topography, properties of debris flow, amount of debris flow. In the study the numerical simulation was focused on the topographic factor. Fundamental analysis of the risk area was implemented with emphasis on the propagation length, thickness, and the development of maximum velocity. The proposed results and the methodology of estimating the structural vulnerability would be helpful in predicting the behavior and the risk assessment of debris flow in urban area. These results will be able to estimate the vulnerability of urban areas affected the most damage by debris flow.

Nonlinear semi-active/passive retrofit design evaluation using incremental dynamic analysis

  • Rodgers, Geoffrey W.;Chase, J. Geoffrey;Roland, Thomas;Macrae, Gregory A.;Zhou, Cong
    • Earthquakes and Structures
    • /
    • 제22권2호
    • /
    • pp.109-120
    • /
    • 2022
  • Older or damaged structures can require significant retrofit to ensure they perform well in subsequent earthquakes. Supplemental damping devices are used to achieve this goal, but increase base shear forces, foundation demand, and cost. Displacement reduction without increasing base shear is possible using novel semi-active and recently-created passive devices, which offer energy dissipation in selected quadrants of the force-displacement response. Combining these devices with large, strictly passive energy dissipation devices can offer greater, yet customized response reductions. Supplemental damping to reduce response without increasing base shear enables a net-zero base shear approach. This study evaluates this concept using two incremental dynamic analyses (IDAs) to show displacement reductions up to 40% without increasing base shear, more than would be achieved for either device alone, significantly reducing the risk of response exceeding the unaltered structural case. IDA results lead to direct calculation of reductions in risk and annualized economic cost for adding these devices using this net-zero concept, thus quantifying the trade-off. The overall device assessment and risk analysis method presented provides a generalizable proof-of-concept approach, and provides a framework for assessing the impact and economic cost-benefit of using modern supplemental energy dissipation devices.