• Title/Summary/Keyword: structural response analysis

Search Result 2,908, Processing Time 0.03 seconds

Rate-sensitive analysis of framed structures Part I: model formulation and verification

  • Izzuddin, B.A.;Fang, Q.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.3
    • /
    • pp.221-237
    • /
    • 1997
  • This paper presents a new uniaxial material model for rate-sensitive analysis addressing both the transient and steady-state responses. The new model adopts visco-plastic theory for the rate-sensitive response, and employs a three-parameter representation of the overstress as a function of the strain-rate. The third parameter is introduced in the new model to control its transient response characteristics, and to provide flexibility in fitting test data on the variation of overstress with strain-rate. Since the governing visco-plastic differential equation cannot be integrated analytically due to its inherent nonlinearity, a new single-step numerical integration procedure is proposed, which leads to high levels of accuracy almost independent of the size of the integration time-step. The new model is implemented within the nonlinear analysis program ADAPTIC, which is used to provide several verification examples and comparison with other experimental and numerical results. The companion paper extends the three-parameter model to trilinear static stress-strain relationships for steel and concrete, and presents application examples of the proposed models.

Earthquake Response Analysis of a RC Bridge employing a Point Hinge Model (포인트 힌지 모델을 적용한 철근콘크리트 교량의 지진응답 해석)

  • 이도형;전종수;박대효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.419-426
    • /
    • 2003
  • Simplified modeling approach for the seismic behavior of a reinforced concrete bridge is investigated in this paper. For this purpose, a hysteretic axial-flexure interaction model was developed and implemented into a nonlinear finite element analysis program. Thus, the seismic response of reinforced concrete bridge piers was evaluated by the simplified point hinge representations. Comparative studies for reinforced concrete bridge piers indicated that the analytical predictions obtained with the new formulations showed a good correlation with experimental results. In addition, seismic response analysis of a reinforced concrete bridge utilizing the simplified point hinge model revealed the adequacy and applicability of the present development.

  • PDF

Earthquake Response Analysis of A Large Scale Seismic Test Structure (대형지진시험구조물의 지진응답해석)

  • Yun, Chung-Band;Park, Kyoung-Lae;Kim, Jae-Min
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.107-113
    • /
    • 1995
  • This paper presents the earthquake response analysis results on the Large-Scale Seismic Test (LSST)structure which was built at Hualien in Taiwan. The seismic analysis is carried out using a computer code KIESSI, which has been developed based on the three-dimensional axisymmetric finite element method incorporating infinite elements for the far field soil region. The soil and structural properties obtained from the post-correlation study of the forced vibration tests (FVT) are utilized to predict seismic responses. The ground accelerations recorded at a site 56.5 m from the test structure are used as control motions. It has been found that the predicted responses are reasonably compared with the observed responses.

  • PDF

Correlation of damage and analysis of R/C building: Experience from the 1995 Kobe earthquake

  • Matsumori, Taizo;Otani, Shunsuke
    • Structural Engineering and Mechanics
    • /
    • v.6 no.8
    • /
    • pp.841-856
    • /
    • 1998
  • During the 1995 Hyogoken-Nanbu Earthquake, a reinforced concrete building, called Jeunesse Rokko, suffered intermediate damage by forming a beam-yielding (weak-beam strong-column) mechanism, which has been regarded as the most desirable earthquake resisting mechanism throughout the world. High cost to repair damage at many beam ends and poor appearance expected after the repair work made the owner decide to tear down the building. Nonlinear earthquake response analyses were conducted to simulate the behavior of the building during the earthquake. The influence of non-structural members was considered in the analysis. The calculated results were compared with the observed damage, especially the location of yield hinges and compression failure of spandrel beams, and the degree of cracking in columns and in column-girder connections.

Evaluation of Dynamic Characteristics of the Box Beam of HANARO Reactor Pool (하나로 원자로 수조내 사각보의 동특성 평가)

  • Kim, Seong-Ho;Dan, Ho-Jin;Ryu, Jeong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.525-525
    • /
    • 2005
  • This study is for the seismic analysis and the structural integrity evaluation of the box beam for supporting nuclear fuel-transfer-basket of the HANARO reactor pool. For performing the seismic analysis and evaluating the structural integrity in air or submerged condition, the finite element model of the fuel-transfer-basket and its supporting box beam(the coupled model) was developed. The hydrodynamic effect is also considered by using added mass concept. The seismic response spectrum analyses of the coupled model under the design floor response spectrum loads of Safe Shutdown Earthquake(SSE) were performed. Through the numerical experiments, the analysis results show that the stress values of the coupled model lot the structural integrity are within the ASME Code limits.

  • PDF

Study on the Applicability of Standard Design Response Spectrum Analysis Method for Pile-type Mooring Facilities (말뚝식 계류시설의 표준설계응답스펙트럼 해석법 적용성 연구)

  • Oh, Jeong-Keun;Jeong, Yeong-Seok;Kwon, Min-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.27-36
    • /
    • 2020
  • The purpose of this paper is to study on the applicability of the standard design response spectrum from the response spectrum analysis method, mainly applied to pile mooring facilities. To this end, after performing the ProShake 1-dimensional site response considering various geological conditions, the current standard design response spectrum was compared, and the ground-pile model in time history and two-dimensional site response analysis using Abaqus were performed to analyze the dynamic behavior of the ground-pile and to examine the selection method of the reference surface of the response spectrum on the installed slope, respectively. As a result, it was confirmed that no problems were found in the applicability of the current standard design response spectrum and no improvements are needed as well when considering the characteristics of the ground-pile dynamic behavior and the slope of the pile mooring facility.

Risk Assessment for a Bridge System Based upon Response Surface Method Compared with System Reliability (체계신뢰성 평가와 비교한 응답면기법에 의한 교량시스템의 위험성평가)

  • Cho, Tae-Jun;Moon, Jae-Woo;Kim, Jong-Tae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.295-300
    • /
    • 2007
  • Probabilistic Risk Assessment considering statistically random variables is performed for the preliminary design of a Arch Bridge. Component reliabilities of girders have been evaluated using the response surfaces of the design variables at the selected critical sections based on the maximum shear and negative moment locations. Response Surface Method (RSM) is successfully applied for reliability analyses for this relatively small probability of failure of the complex structure, which is hard to be obtained by Monte-Carlo Simulations or by First Order Second Moment Method that can not easily calculate the derivative terms of implicit limit state functions. For the analysis of system reliability, parallel resistance system composed of girders is changed into parallel series connection system. The upper and lower probabilities of failure for the structural system have been evaluated and compared with the suggested prediction method for the combination of failure modes. The suggested prediction method for the combination of failure modes reveals the unexpected combinations of element failures in significant]y reduced time and efforts compared with the previous permutation method or system reliability analysis method.

  • PDF

MCMC Approach for Parameter Estimation in the Structural Analysis and Prognosis

  • An, Da-Wn;Gang, Jin-Hyuk;Choi, Joo-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.641-649
    • /
    • 2010
  • Estimation of uncertain parameters is required in many engineering problems which involve probabilistic structural analysis as well as prognosis of existing structures. In this case, Bayesian framework is often employed, which is to represent the uncertainty of parameters in terms of probability distributions conditional on the provided data. The resulting form of distribution, however, is not amenable to the practical application due to its complex nature making the standard probability functions useless. In this study, Markov chain Monte Carlo (MCMC) method is proposed to overcome this difficulty, which is a modern computational technique for the efficient and straightforward estimation of parameters. Three case studies that implement the estimation are presented to illustrate the concept. The first one is an inverse estimation, in which the unknown input parameters are inversely estimated based on a finite number of measured response data. The next one is a metamodel uncertainty problem that arises when the original response function is approximated by a metamodel using a finite set of response values. The last one is a prognostics problem, in which the unknown parameters of the degradation model are estimated based on the monitored data.

Transient Response Analysis of a Lumped Mass System Using Sensitivity Method in Time Domain (시간영역 민감도 방법을 이용한 집중 질량 구조물의 천이응답 해석)

  • 백문열;기창두
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.217-223
    • /
    • 1997
  • This paper deals with the basic concepts of sensitivity analysis in a time domain for the transient response of a lumped mass system. Sensitivity analysis methods in thme domain for determining the effects of parameter changes on the response of a dynamic system by external excitation are presented. The parametric sensitivity of a lumped mass system in time domain can be investigated using different types of sensitivity functions, including first order standard and percentage sensitivity functions. These sensitivity functions are determined as a function of partial derivatives of system variables taken with respect to system parameters. In addition, we compared the results of the analytical method by direct method and those of numerical methods.

  • PDF