• Title/Summary/Keyword: structural plasticity

Search Result 457, Processing Time 0.019 seconds

Modeling Microstructural Changes in Steel Wire Drawing (펄라이트 강 선재 인발에서 미세조직 변화 모델링)

  • Yoon, S.H.;Lee, Y.S.;Nam, W.J.;Park, K.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.271-272
    • /
    • 2008
  • This paper is concerned with the prediction of micro structural changes of pearlitic steel wire during clod drawing. The most important microstructural aspects are ferrite/cementite interlamellar spacing, cementite shape and thickness, since those are crucial factors to determine the mechanical strength of pearlitic steel. In this study, a couple of new algorithms to predict the above microstructural changes are developed based on the deformation histories of macro material points obtained from finite element simulations for pearlitic steel wire drawing. Some predictions are shown. The special features of the algorithms developed in this study are discussed in details.

  • PDF

Quantitative analysis of effect of shrink fit in cold forging (냉간단조에서 금형 열박음 영향의 정량적 분석)

  • Li, Q.S.;Lee, M.C.;Jung, D.C.;Son, Y.H.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.119-123
    • /
    • 2009
  • In this paper, effects of major design parameters of cold forging dies on die mechanics are quantitatively investigated with emphasis on shrink fit using a thermoelastic finite element method. A ball-stud cold forging process found in a cold forging company is selected as a test process and the effects of die insert material, shrink fit, dimension of ring, partition of die inert and clamping force on effective stress and circumferential stress are analyzed.

  • PDF

Mechanical properties and workability of micro-alloyed steel on cold forming of high tension bolt (고장력볼트 냉간압조용 비조질강 특성에 관한 연구)

  • Lee, Y.S.;Choi, J.M.;Hwang, B.K.;Chung, T.W.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.132-136
    • /
    • 2009
  • The importance and interests for saving of energy and cost in industry has been steadily grown up. Therefore, process optimization to reduce the processing step and energy is one of the most important things. The micro-alloyed steel of which post-heat-treatment is not necessary, has attractive points for high strength materials. However, for the application of non-heat-treated steel to structural parts, it is necessary to confirm the reliability of mechanical properties. In order to estimate mechanical properties. The microstructure, hardness, tensile strength, compressive strength and tensile fatigue strength of micro-alloyed steel having 900MPa tensile strength has been investigated.

  • PDF

Coating Layer Behavior Analysis of Al-Si Coated Boron Steel in Hot Bending Process

  • Yang, Li;Kang, Chung-Gil
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.307-310
    • /
    • 2009
  • Nowadays, the usage of high strength steel has been growing in automobile industry mainly as structural parts since for its lightweight and high strength properties the oil crisis happened. Owing to poor formability, complex-shaped high-strength steel components are invariably produced through hot press forming. The high-strength steel sheets are in so me instances used with an Al-Si-coating with a view to prevent scaling of components during hot press forming. How ever, friction and fracture characteristics of Al-Si-coated high-strength steel during hot press forming process have not yet been investigated. In this paper, the formed parts which were formed in hot bending process were investigated by using EDS. SEM and nano indenter in order to analysis the coating layer behavior.

  • PDF

Seismic Analysis of a Bridge Using Fiber Element (섬유요소를 이용한 교량의 지진해석)

  • 조정래;곽임종;조창백;김병석;김영진
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.151-158
    • /
    • 2002
  • In the present design concept, the nonlinear behaviour of bridges is at lowed under large earthquake. The nonlinearity is, however, localized like pier, bearing, etc. Especially, pier columns are most important members for seismic performance. It is, however, difficult to solve the problem how the nonlinearity of columns should be modelled. In this study, the fiber element is used for modelling pier column. The element is a kind of structural elements like frame element, and it can model the distributed plasticity of plastic hinge. A 3 span continous bridge is taken for seismic analysis. First, the nonlinear static analysis the column at fixed support are performed so that the characteristics of column is analyzed. Second, Linear and nonlinear dynamic analysises using simplified model for longitudinal direction are carried out and the results are analyzed.

  • PDF

Numerical and Experimental Analysis of Hydroforming Process of Sheet Metal Pairs (박판페어를 이용한 하이드로포밍 공정의 수치적 및 실험적 해석)

  • Kim T. J.;Yang D. Y.;Han S. S.;Nam J. B.;Jin Y. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.50-53
    • /
    • 2001
  • Hydroforming process has become an effective manufacturing process because it can be adaptable to forming of complex structural components. Tube hydroforming has been successfully developed in the real industrial field by many researchers. However, there still remains the constraint about shape which can be manufactured by tube hydroforming. In order to improve this constraint of shape and formability of conventional sheet metal forming, hydroforming process of sheet metal pairs becomes an important technology. In the present work, the finite element analysis of hydroforming process of sheet metal pairs is presented. After basic study about experimental parameters based on numerical analysis, hydroforming process of sheet metal pairs is developed which uses hydraulic pressure as a main forming source.

  • PDF

NUMERICAL SIMULATION OF PLASTIC FLOW BY FINITE ELEMENT LIMIT ANALYSIS

  • Hoon-Huh;Yang, Wei-H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1992.03a
    • /
    • pp.159-176
    • /
    • 1992
  • Limit analysis has been rendered versatile in many problems such as structural problems and metal forming problems. In metal forming analysis, a slip-line method and an upper bound method approach to limit solutions is considered as the most challenging areas. In the present work, a general algorithm for limit solutions of plastic flow is developed with the use of finite element limit analysis. The algorithm deals with a generalized Holder inequality, a duality theorem, and a combined smoothing and successive approximation in addition to a general procedure for finite element analysis. The algorithm is robust such that from any initial trial solution, the first iteration falls into a convex set which contains the exact solution(s) of the problem. The idea of the algorithm for limit solution is extended from rigid/perfectly-plastic materials to work-hardening materials by the nature of the limit formulation, which is also robust with numerically stable convergence and highly efficient computing time.

  • PDF

A Model for the Relation between Strength and Porosity in Sintered Parts Produced by Powder Injection Molding Process (분말사출성형을 통해 제조된 소결체의 기공율에 따른 강도예측모델)

  • 성환진;하태권;안상호;장영원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.375-378
    • /
    • 2003
  • In the present study, a new approach to predict the strength of sintered materials has been carried out and a new framework combining neck growth model and ideal pore model has been established based on the results of tensile tests on powder injection molded specimens with the various porosity. Powder injection molding (PIM) uses the shaping advantage of injection molding but is applicable to metals and ceramics. PIM delivers structural materials in a shaping technology previously restricted to polymers. 17-4 PH stainless steel powders with average diameters of 10 $\mu\textrm{m}$ were injection-molded into flat tensile specimens sintered at the various temperatures ranging from 900 to 1350$^{\circ}C$ for 1h. The relationships between strength and porosity were applied to the experimental results and verified.

  • PDF

Analytical Study on the Effect of Forming Process on Springback of an Automobile Rear Frame (성형법에 따른 자동차 리어 프레임의 스프링백 해석대비)

  • Song Y. J.;Jung H. S.;Hahn Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.63-67
    • /
    • 2001
  • Springback after drawing and trimming is regarded as one of the most influential factors during forming structural frames since the part dimensions have dominant effect on assembly quality at later stages. In this study, analytical results were obtained from a commercial FEM package for an outer rear frame of an automobile. In terms of springback and twist the effect of forming process is compared and discussed between open and closed-ends forming

  • PDF

Forging Process Design of Aluminium Alloys for Aircraft Parts (항공기용 알루미늄부품의 단조 공정설계연구)

  • Kwon Y. M.;Song J. I.;Lee Y. S.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.90-93
    • /
    • 2000
  • Al ally 7050 has been developed for higher strength and improved property against stress-corrosion cracking. Since the use of this alloy becomes more important for forged aircraft structural components. $\phi$ 65mm extruded billet has been forged for a highly-stressed aircraft parts. After forging processing and heat treatment, the forged parts showed undesirable microstructure caused by severe local grain coarsening at the surface layer and heavily-localized metal flow, the analysis of resulted in degraded mechanical properties. The above results have been compared to simulation by using the DEFORM-3D and those showed the thermomechamical processing must be optimized in terms of forging temperature, strain rate and deformation amount. To prevent the grain coarsening at the surface layer $\varepsilon$ heavily-localized grain flows.

  • PDF