• Title/Summary/Keyword: structural performance test

Search Result 2,146, Processing Time 0.03 seconds

Structural damage detection using a multi-stage improved differential evolution algorithm (Numerical and experimental)

  • Seyedpoor, Seyed Mohammad;Norouzi, Eshagh;Ghasemi, Sara
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.235-248
    • /
    • 2018
  • An efficient method utilizing the multi-stage improved differential evolution algorithm (MSIDEA) as an optimization solver is presented here to detect the multiple-damage of structural systems. Natural frequency changes of a structure are considered as a criterion for damage occurrence. The structural damage detection problem is first transmuted into a standard optimization problem dealing with continuous variables, and then the MSIDEA is utilized to solve the optimization problem for finding the site and severity of structural damage. In order to assess the performance of the proposed method for damage identification, an experimental study and two numerical examples with considering measurement noise are considered. All the results demonstrate the effectiveness of the proposed method for accurately determining the site and severity of multiple-damage. Also, the performance of the MSIDEA for damage detection compared to the standard differential evolution algorithm (DEA) is confirmed by test examples.

Structural Analysis and Performance Test of Variable Displacement Swash Plate Piston Pumps (가변용량형 사판식 피스톤 펌프의 구조해석 및 성능시험)

  • Lee, Jeong-Sil;Jun, Cha-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.105-113
    • /
    • 2022
  • In this study, a variable displacement swash plate pump supplying high-pressure hydraulic oil to control the hydraulic system of a marine engine was developed. A structural analysis was performed on the main parts of the pump to ensure the structural safety in the design. Using a pump testing equipment, performance characteristics such as no-load flow rate, load flow rate, flow rate according to the swivel angle change, flow rate with lubrication orifice, and response time according to the swivel motion were tested. Consequently, the pump was confirmed to satisfy the required specifications.

High-Temperature Structural Analysis of a Small-Scale Prototype of a Process Heat Exchanger (IV) - Macroscopic High-Temperature Elastic-Plastic Analysis - (공정열교환기 소형 시제품에 대한 고온구조해석(IV) - 거시적 고온 탄·소성 구조해석을 중심으로 -)

  • Song, Kee-Nam;Hong, Sung-Deok;Park, Hong-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1249-1255
    • /
    • 2011
  • A PHE (Process Heat Exchanger) is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR (Very High Temperature Reactor) to a chemical reaction that yields a large quantity of hydrogen. A small-scale PHE prototype made of Hastelloy-X was scheduled for testing in a small-scale gas loop at the Korea Atomic Energy Research Institute. In this study, as a part of the evaluation of the high-temperature structural integrity of the PHE prototype, high-temperature structural analysis modeling, and macroscopic thermal and elastic-plastic structural analysis of the PHE prototype were carried out under the gas-loop test conditions as a preliminary qwer123$study before carrying out the performance test in the gas loop. The results obtained in this study will be used to design the performance test setup for the modified PHE prototype.

Structural Model Test for Strength Performance Evaluation of Fairlead Chain Stopper Installed on MW Class Floating Type Offshore Wind Turbine (메가와트급 부유식 해상풍력발전기용 페어리드 체인 스토퍼의 강도 성능평가를 위한 구조 모형 시험)

  • Chang-Yong Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.3
    • /
    • pp.421-431
    • /
    • 2023
  • Recently, the destructive power of typhoons is continuously increasing due to the influence of global warming. In a situation where the installation of floating wind turbines is increasing around the world, concerns about the huge loss and collapse of floating offshore wind turbines due to strong typhoons are deepening. Regarding to the safe operation of the floating offshore wind turbine, the development of a new type of disconnectable mooring system is required. A new fairlead chain stopper considered in this study is devised to more easily attach or detach the floating offshore wind turbine with mooring lines comparing to other disconnectable mooring apparatuses. In order to investigate the structural safety of the initial design of fairlead chain stopper that can be applied to MW-class floating type offshore wind turbine, scale-down structural models were produced using a 3-D printer and structural tests were performed on the models. For the structural tests of the scale-down models, tensile specimens of acrylonitrile butadiene styrene material that was used in the 3-D printing were prepared, and the material properties were evaluated by performing the tensile tests. The finite element analysis of fairlead chain stopper was performed by applying the material properties obtained from the tensile tests and the same load and boundary conditions as in the scale-down model structural tests. Through the finite element analysis, the structural weak parts on the fairlead chain stopper were reviewed. The structural model tests were performed considering the main load conditions of fairlead chain stopper, and the test results were compared to the finite element analysis. Through the results of this study, it was possible to experimentally verify the structural safety of the initial design of fairlead chain stopper. It is also judged that the study results can be usefully used to improve the structural strength of fairlead chain stopper in a detailed design stage.

The Durability Performance Evaluation of Automotive Components in the Virtual Testing Laboratory (차량 부품의 내구성 평가를 위한 가상시험실 구축)

  • Kim, Gi-Hoon;Kang, Woo-Jong;Kim, Dae-Sung;Ko, Woong-Hee;Lim, Jae-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.68-74
    • /
    • 2006
  • The evaluation of durability performance in Virtual Testing Laboratory(VTL) is a new concept of vehicle design, which can reduce the automotive design period and cost. In this study, the multibody dynamics model of a car is built with a reverse engineering design. Hard points and masses of components are measured by a surface scanning device and imported into CAD system. In order to simulate the non-linear dynamic behavior of force elements such as dampers and bushes, components and materials are tested with specialized test equipments. An optimized numerical model for the damping behavior is used and the hysteresis of bush rubber is considered in the simulation. Loads of components are calculated in VTL and used in the evaluation of durability performance. In order to verify simulation results, loads of components in the vehicle are measured and durability tests are performed.

Performance validation and application of a mixed force-displacement loading strategy for bi-directional hybrid simulation

  • Wang, Zhen;Tan, Qiyang;Shi, Pengfei;Yang, Ge;Zhu, Siyu;Xu, Guoshan;Wu, Bin;Sun, Jianyun
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.373-390
    • /
    • 2020
  • Hybrid simulation (HS) is a versatile tool for structural performance evaluation under dynamic loads. Although real structural responses are often multiple-directional owing to an eccentric mass/stiffness of the structure and/or excitations not along structural major axes, few HS in this field takes into account structural responses in multiple directions. Multi-directional loading is more challenging than uni-directional loading as there is a nonlinear transformation between actuator and specimen coordinate systems, increasing the difficulty of suppressing loading error. Moreover, redundant actuators may exist in multi-directional hybrid simulations of large-scale structures, which requires the loading strategy to contain ineffective loading of multiple actuators. To address these issues, lately a new strategy was conceived for accurate reproduction of desired displacements in bi-directional hybrid simulations (BHS), which is characterized in two features, i.e., iterative displacement command updating based on the Jacobian matrix considering nonlinear geometric relationships, and force-based control for compensating ineffective forces of redundant actuators. This paper performs performance validation and application of this new mixed loading strategy. In particular, virtual BHS considering linear and nonlinear specimen models, and the diversity of actuator properties were carried out. A validation test was implemented with a steel frame specimen. A real application of this strategy to BHS on a full-scale 2-story frame specimen was performed. Studies showed that this strategy exhibited excellent tracking performance for the measured displacements of the control point and remarkable compensation for ineffective forces of the redundant actuator. This strategy was demonstrated to be capable of accurately and effectively reproducing the desired displacements in large-scale BHS.

Bond behavior between concrete and prefabricated Ultra High-Performance Fiber-Reinforced Concrete (UHPFRC) plates

  • Mansour, Walid;Sakr, Mohammed A.;Seleemah, Ayman A.;Tayeh, Bassam A.;Khalifa, Tarek M.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.305-316
    • /
    • 2022
  • Externally bonded ultrahigh performance fiber-reinforced concrete (UHPFRC) is commonly used as a strengthening material for reinforced concrete (RC) structures. This study reports the results of an experimental program investigating the bonding behavior between concrete and prefabricated UHPFRC plates. The overall experimental program is consisting of five RC specimens, which are strengthened using the different lengths and widths of prefabricated UHPFRC plates. These specimens were analyzed using the pull-pull double-shear test. The performance of each strengthened specimen is presented, discussed and compared in terms of failure mode, maximum load, load-slip relationship, fracture energy and strain distribution. Specimen C-25-160-300 which bonded along the whole width of 160 mm recorded the highest maximum load (109.2 kN) among all the analysed specimens. Moreover, a 3D numerical finite element model (FEM) is proposed to simulate the bond behavior between concrete and UHPFRC plates. Moreover, this study reviews the analytical models that can predict the relationship between the maximum bond stress and slip for strengthened concrete elements. The proposed FEM is verified against the experimental program and then used to test 36 RC specimens strengthened with prefabricated UHPFRC plates with different concrete grades and UHPFRC plate widths. The obtained results together with the review of analytical models helped in the formation of a design equation for estimating the bond stress between concrete and prefabricated UHPFRC plates.

Thermal Insulation Performance of Composite Waterproofing Method of Thermal Supplement Type (단열 보완형 복합방수공법의 단열성능에 관한 연구)

  • Choi, Sung-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.59-66
    • /
    • 2014
  • Insulation of rooftop is one of the major performance to energy-saving construction. Further, waterproofing performance is also important. For such a reason, it is need to develop waterproofing method containing thermal insulation property. This study was wanted to evaluate thermal insulation performance about the composite waterproofing method of thermal supplement type that is developed recently. As a result of waterproofing performance test, every test item was showed over the performance standards of KS (Korean (Industrial) Standards). And the result of thermal insulation performance test, the highest temperature in the styrofoam box was $25.91^{\circ}C$, the bubble sheet box was $17.28^{\circ}C$, the insulation sheet box was $15.47^{\circ}C$ and the waterproofing sheet box of thermal supplement type was $24.11^{\circ}C$. In observations of thermal bridges of sheet's joint, thermal bridges was not identified at the sheet's joint. As a result, composite waterproofing method of thermal supplement type is interpreted to have thermal insulation performance.

Reinforced Concrete Slabs with Corroded Bars (철근이 부식된 콘크리트 슬래브의 구조성능 평가에 대한 실험적 연구)

  • Jung, Eun-Chul;Lee, Kyoung-Un;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.718-723
    • /
    • 2000
  • Corrosion is a world wide problem effecting a large number of structure. Cost of repair and rehabilitation on reinforcement structure damaged by steel corrosion is expensive. But structural capacity on low level corrosion is increased. So this experimental study was performed to know structural performance on reinforced concrete slabs with low level corroded bars. As in the case of test samples, bond stress and structural capacity increases up to 2% corrosion level.

  • PDF

Design and Analyses on the Spacer Grid of the PLWR Fuel (가압경수로 핵연료 지지격자의 기계/구조적 설계 및 분석)

  • Song, Kee-Nam
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.746-751
    • /
    • 2001
  • Design requirements for the nuclear fuel assembly grid of the pressurized water reactor are reviewed from the mechanical/structural point of view. And mechanical/structural tests and numerical analyses on the various spacer grid candidates that has been uniquely designed by KAERI are carried out to find out their mechanical/structural performance. As a result, the results from the numerical analyses are good agreements with test results.

  • PDF