• Title/Summary/Keyword: structural optimal design

Search Result 1,129, Processing Time 0.03 seconds

The path of placement of a removable partial denture: a microscope based approach to survey and design

  • Mamoun, John Sami
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.1
    • /
    • pp.76-84
    • /
    • 2015
  • This article reviews the topic of how to identify and develop a removable partial denture (RPD) path of placement, and provides a literature review of the concept of the RPD path of placement, also known as the path of insertion. An optimal RPD path of placement, guided by mutually parallel guide planes, ensures that the RPD flanges fit intimately over edentulous ridge structures and that the framework fits intimately with guide plane surfaces, which prevents food collecting empty spaces between the intaglio surface of the framework and intraoral surfaces, and ensures that RPD clasps engage adequate numbers of tooth undercuts to ensure RPD retention. The article covers topics such as the causes of obstructions to RPD intra-oral seating, the causes of food collecting empty spaces that may exist around an RPD, and how to identify if a guide plane is parallel with the projected RPD path of placement. The article presents a method of using a surgical operating microscope, or high magnification (6-8x or greater) binocular surgical loupes telescopes, combined with co-axial illumination, to identify a preliminary path of placement for an arch. This preliminary path of placement concept may help to guide a dentist or a dental laboratory technician when surveying a master cast of the arch to develop an RPD path of placement, or in verifying that intra-oral contouring has aligned teeth surfaces optimally with the RPD path of placement. In dentistry, a well-fitting RPD reduces long-term periodontal or structural damage to abutment teeth.

Performance of partial strength connection connected by thick plate between column flanges

  • Tahir, Mahmood M.;Juki, Irwan;Ishak, Mohd Y.;Mohammad, Shahrin;Awang, Abdullah Z.;Plank, Roger
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.215-228
    • /
    • 2014
  • Traditional beam connections to the minor axis of a column have relatively low strength and stiffness. A modified detail, using a plate welded between the toes of the column flange - referred to as a toe plate connection - is examined in this paper. The results of an experimental investigation for both flush and extended end-plate connections connected to a 25 mm thick end-plate are presented. The tests are complemented by finite element modelling which compares very well with the test observations. The results show a significant increase in both moment resistance and initial stiffness for this connection detail compared with connections made directly to the column web. This offers the prospect of more optimal solutions taking advantage of partial strength frame design for the minor axis as well as major axis.

Active Control of Structural Vibration Using An Instantaneous Control Algorithm including Acceleration Feedback (가속도가 포함된 순간최적제어 알고리듬을 이용한 구조물 진동의 능동제어)

  • 문석준;정태영
    • Journal of KSNVE
    • /
    • v.6 no.2
    • /
    • pp.215-224
    • /
    • 1996
  • Active vibration control is generally used to reduce vibration level by the actuators based on measured signal. Dynamic properties of a structure can be easily modified by the active vibration control, so that the vibration level may be effectively reduced to the magnitude below the allowable limit over a wide frequency rangs. In this paper, an instantaneous optimal control algorithm including acceleration feedback is presented for the active vibration control of large structures considering facts that the acceleration response can be easily measured, but the displacement and velocity response are obtained by numerically integrating the measured acceleration response with some errors. The adverse effect of the time delay is overcomed by taking into account the dynamic characteristics of an actuator and filters in the design of controller. Performance test is carried out using a hydraulic active mass driver on a test structure$(L{\times}W{\times}H;=;1200mm{\times}800mm{\times}1600mm, about;500kg)$ supported by four columns under base excitations. It is confirmed that the vibration level of the test structure are reduced to about 1/6 near resonance.

  • PDF

Genetic Optimization of Fyzzy Set-Fuzzy Model Using Successive Tuning Method (연속 동조 방법을 이용한 퍼지 집합 퍼지 모델의 유전자적 최적화)

  • Park, Keon-Jun;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.207-209
    • /
    • 2007
  • In this paper, we introduce a genetic optimization of fuzzy set-fuzzy model using successive tuning method to carry out the model identification of complex and nonlinear systems. To identity we use genetic alrogithrt1 (GA) sand C-Means clustering. GA is used for determination the number of input, the seleced input variables, the number of membership function, and the conclusion inference type. Information Granules (IG) with the aid of C-Means clustering algorithm help determine the initial paramters of fuzzy model such as the initial apexes of the, membership functions in the premise part and the initial values of polyminial functions in the consequence part of the fuzzy rules. The overall design arises as a hybrid structural and parametric optimization. Genetic algorithms and C-Means clustering are used to generate the structurally as well as parametrically optimized fuzzy model. To identify the structure and estimate parameters of the fuzzy model we introduce the successive tuning method with variant generation-based evolution by means of GA. Numerical example is included to evaluate the performance of the proposed model.

  • PDF

Determination of optimal parameters for perforated plates with quasi-triangular cutout by PSO

  • Jafari, Mohammad;Hoseyni, Seyed A. Mahmodzade;Chaleshtari, Mohammad H. Bayati
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.795-807
    • /
    • 2016
  • This study tries to examine the effect of different parameters on stress analysis of infinite plates with central quasi-triangular cutout using particle swarm optimization (PSO) algorithm and also an attempt has been made to introduce general optimum parameters in order to achieve the minimum amount of stress concentration around this type of cutout on isotropic and orthotropic plates. Basis of the presented method is expansion of analytical method conducted by Lekhnitskii for circular and elliptical cutouts. Design variables in this study include fiber angle, load angle, curvature radius of the corner of the cutout, rotation angle of the cutout and at last material of the plate. Also, diagrams of convergence and duration time of the desired problem are compared with Simulated Annealing algorithm. Conducted comparison is indicative of appropriateness of this method in optimization of the plates. Finite element numerical solution is employed to examine the results of present analytical solution. Overlap of the results of the two methods confirms the validity of the presented solution. Results show that by selecting the aforementioned parameters properly, less amounts of stress can be achieved around the cutout leading to an increase in load-bearing capacity of the structure.

Metamodel based multi-objective design optimization of laminated composite plates

  • Kalita, Kanak;Nasre, Pratik;Dey, Partha;Haldar, Salil
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.301-310
    • /
    • 2018
  • In this paper, a multi-objective multiparameter optimization procedure is developed by combining rigorously developed metamodels with an evolutionary search algorithm-Genetic Algorithm (GA). Response surface methodology (RSM) is used for developing the metamodels to replace the tedious finite element analyses. A nine-node isoparametric plate bending element is used for conducting the finite element simulations. Highly accurate numerical data from an author compiled FORTRAN finite element program is first used by the RSM to develop second-order mathematical relations. Four material parameters-${\frac{E_1}{E_2}}$, ${\frac{G_{12}}{E_2}}$, ${\frac{G_{23}}{E_2}}$ and ${\upsilon}_{12}$ are considered as the independent variables while simultaneously maximizing fundamental frequency, ${\lambda}_1$ and frequency separation between the $1^{st}$ two natural modes, ${\lambda}_{21}$. The optimal material combination for maximizing ${\lambda}_1$ and ${\lambda}_{21}$ is predicted by using a multi-objective GA. A general sensitivity analysis is conducted to understand the effect of each parameter on the desired response parameters.

Analytical Approach to Compression and Shear Characteristics of the Unit Cell of PCM Core with Pyramidal Configuration (피라미드 형상의 PCM 코어 단위 셀의 압축 및 전단특성에 관한 해석적 연구)

  • Kim, S.W.;Jung, H.C.;Lee, Y.S.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.7
    • /
    • pp.411-415
    • /
    • 2010
  • A sandwich panel which is comprised of truss cores faced with solid face sheets is lightweight and multi-functional. So it is widely used to not only structural material but also heat transfer media in transportation field such as airplane, train and vessel. There are various core topologies such as pyramidal and tetrahedral truss, square honeycombs and kagome truss. The study focused on analytical approach to optimize compression and shear quality of the unit cell of PCM with pyramidal configuration. With various unit cell models which have the same core weight per unit area but different truss member angle, analytical solution for effective stress ($\bar{\sigma},\bar{\tau}$), peak stress ($\bar{\sigma}_{peak},\bar{\tau}_{peak}$) by yielding and buckling, relative density ($\bar{\rho}_c$) and effective stiffness ($\bar{E},\bar{G}$) have been computed and compared each other. With this approach, the most optimal core configuration was predicted. The result has become the efficient guidelines for the design of PCM core structure.

A Study for Application of Active Magnetic Bearing using Quantitative Feedback Theory (Quantitative Feedback Theory를 이용한 능동 자기베어링의 적용 연구)

  • Lee, Gwan-Yeol;Lee, Hyeong-Bok;Kim, Yeong-Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.107-115
    • /
    • 2001
  • Most of rotating machineries supported by contact bearing accompany lowering efficiency, vibration and wear. Moreover, because of vibration, which is occurred in rotating shaft, they have the limits of driving speed and precision. The rotor system has parametric variations or external disturbances such as mass unbalance variations in long operation. Therefore, it is necessary to research about magnetic bearing, which is able to support the shaft without mechanical contact and to control rotor vibration without being affected by external disturbances or parametric changes. Magnetic bearing system in the paper is composed of position sensor, digital controller, actuating amplifier and electromagnet. This paper applied the robust control method using quantitative feedback theory (QFT) to control the magnetic bearing. It also proposed design skill of optimal controller, in case the system has structured uncertainty, unstructured uncertainty and disturbance. Reduction of vibration is verified at critical rotating speed even external disturbance exists. Unbalance response, a serious problem in rotating machinery, is improved by magnetic bearing using QFT algorithm.

  • PDF

Hydraulic analysis of design alternatives to improve an industrial water distribution system (공업용수 배수관망시스템을 개선하기 위한 설계 대안의 수리해석)

  • Lim, Seong-Rin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.97-106
    • /
    • 2015
  • A CCTV inspection method has been widely used to assess sewer condition and performance, but Korea lacks a proper decision support system for prioritizing sewer repair and rehabilitation (R&R). The objective of this paper is to introduce the results that we have developed in the Sewer Condition Assessment and Rehabilitation Decision-making (SCARD) Program using MS-EXCEL. The SCARD-Program is based on a standardized defect score for sewer structural and hydraulic assessment. Priorities are ranked based on risk scores, which are calculated by multiplying the sewer severity scores by the environmental impacts. This program is composed of three parts, which are decision-making for sewer condition and performance assessment, decision-making for sewer R&R priority assessment, and decision-making for optimal budget allocation. The SCARD-Program is useful for decision-makers, as it enables them to assess the sewer condition and to prioritize sewer R&R within the limited annual budget. In the future, this program logic will applied to the GIS-based sewer asset management system in local governments.

The study on the safety inspection system model of the tower crane a construction site in Korea (국내 건설현장 타워크레인 안전진단 관리시스템 모델에 관한 연구)

  • Yeon, In-Soo;Seo, Jang-Hoon;Kang, Kyeong-Sik
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2006.11a
    • /
    • pp.499-507
    • /
    • 2006
  • The tower cranes are widely used in very useful construction machine the sites of constructing high-structure and have a structural sensitiveness. Therefore, the accidents have often happened due to the deficiency of laborer's understanding md lack of safety of structure. Till now, as we have research and studied above, we can properly protect accidents by construction equipments particularly crane as well as most disasters which occur frequently in construction site. The goal of this study is the safety inspection model of the tower crane a construction site, which preventible the collapse accident of tower crane which is constructed by using the correcting frame. In order to accomplish the goal of this study, the field survey, the reference investigation and the structure analysis were performed for the collapse accident of tower nine using the correcting data. This study will be proposed a build-up solutions about operating and release of safety constructions and researched about software safety estimation. Also, preventing safety problems of Tower Crane Construction site as applying safety estimation program and laws and regulations. As a result, The real time control of tower crane inspection system is implemented by to illustrate the application of the adopted optimal design model.

  • PDF