• 제목/요약/키워드: structural monitoring

검색결과 1,883건 처리시간 0.03초

텍스트마이닝 기법을 활용한 울진군 금강송 산지농업 의제설정 변화 - 매스미디어와 블로그·카페 키워드를 중심으로 - (Analysis of Agenda-setting Changes in Alpine Agricultural of Uljin-gun Using Text-Mining - Focusing on the Keywords of Mass-media, Blog·Cafe -)

  • 도지윤;정명철
    • 한국농촌건축학회논문집
    • /
    • 제24권3호
    • /
    • pp.47-57
    • /
    • 2022
  • This study attempted to grasp the status and perception of Uljin Geumgangsong by grasping mass media issues and user perception using big data, and to present basic data when constructing monitoring using user perception by examining the establishment relationship of agenda setting from a time-series perspective. The results of collecting and analyzing text data that can identify mass media and visitor awareness are as follows. First, both mass media and visitor keywords were related to the importance of the value and meaning of Uljin Geumgangsong. Second, in the case of the connection network, Geumgang Pine Agriculture was centered, but in the case of difference in perception between mass media and visitors, such results were derived due to the object of interest. Third, in the case of the connection relationship structure, the connection strength was strong because there were many overlapping contents of mass media. Fourth, as a result of the centrality analysis, both mass media and visitor-aware keywords were positively recognized as spaces created and maintained through institutional support, and objective perception could be grasped by finding hidden keywords. Fifth, as a result of time series analysis, it was possible to grasp the flow through the issue keywords that appeared by period, and unlike the past, it was recognized as a place for tourism and travel. Finally, as a result of examining whether the agenda setting is consistent, there is a mass media influence, so it is thought that more diverse and more information and publicity are needed by utilizing it.

Ensemble-based deep learning for autonomous bridge component and damage segmentation leveraging Nested Reg-UNet

  • Abhishek Subedi;Wen Tang;Tarutal Ghosh Mondal;Rih-Teng Wu;Mohammad R. Jahanshahi
    • Smart Structures and Systems
    • /
    • 제31권4호
    • /
    • pp.335-349
    • /
    • 2023
  • Bridges constantly undergo deterioration and damage, the most common ones being concrete damage and exposed rebar. Periodic inspection of bridges to identify damages can aid in their quick remediation. Likewise, identifying components can provide context for damage assessment and help gauge a bridge's state of interaction with its surroundings. Current inspection techniques rely on manual site visits, which can be time-consuming and costly. More recently, robotic inspection assisted by autonomous data analytics based on Computer Vision (CV) and Artificial Intelligence (AI) has been viewed as a suitable alternative to manual inspection because of its efficiency and accuracy. To aid research in this avenue, this study performs a comparative assessment of different architectures, loss functions, and ensembling strategies for the autonomous segmentation of bridge components and damages. The experiments lead to several interesting discoveries. Nested Reg-UNet architecture is found to outperform five other state-of-the-art architectures in both damage and component segmentation tasks. The architecture is built by combining a Nested UNet style dense configuration with a pretrained RegNet encoder. In terms of the mean Intersection over Union (mIoU) metric, the Nested Reg-UNet architecture provides an improvement of 2.86% on the damage segmentation task and 1.66% on the component segmentation task compared to the state-of-the-art UNet architecture. Furthermore, it is demonstrated that incorporating the Lovasz-Softmax loss function to counter class imbalance can boost performance by 3.44% in the component segmentation task over the most employed alternative, weighted Cross Entropy (wCE). Finally, weighted softmax ensembling is found to be quite effective when used synchronously with the Nested Reg-UNet architecture by providing mIoU improvement of 0.74% in the component segmentation task and 1.14% in the damage segmentation task over a single-architecture baseline. Overall, the best mIoU of 92.50% for the component segmentation task and 84.19% for the damage segmentation task validate the feasibility of these techniques for autonomous bridge component and damage segmentation using RGB images.

An improved time-domain approach for the spectra-compatible seismic motion generation considering intrinsic non-stationary features

  • Feng Cheng;Jianbo Li;Zhixin Ding;Gao Lin
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.968-980
    • /
    • 2023
  • The dynamic structural responses are sensitive to the time-frequency content of seismic waves, and seismic input motions in time-history analysis are usually required to be compatible with design response spectra according to nuclear codes. In order to generate spectra-compatible input motions while maintaining the intrinsic non-stationarity of seismic waves, an improved time-domain approach is proposed in this paper. To maintain the nonstationary characteristics of the given seismic waves, a new time-frequency envelope function is constructed using the Hilbert amplitude spectrum. Based on the intrinsic mode functions (IMFs) obtained from given seismic waves through variational mode decomposition, a new corrective time history is constructed to locally modify the given seismic waves. The proposed corrective time history and time-frequency envelope function are unique for each earthquake records as they are extracted from the given seismic waves. In addition, a dimension reduction iterative technique is presented herein to simultaneously superimpose corrective time histories of all the damping ratios at a specific frequency in the time domain according to optimal weights, which are found by the genetic algorithm (GA). Examples are presented to show the capability of the proposed approach in generating spectra-compatible time histories, especially in maintaining the nonstationary characteristics of seismic records. And numerical results reveal that the modified time histories generated by the proposed method can obtain similar dynamic behaviors of AP1000 nuclear power plant with the natural seismic records. Thus, the proposed method can be efficiently used in the design practices.

Response of two-way reinforced concrete voided slabs enhanced by steel fibers and GFRP sheets under monotonic loading

  • Adel A. Al-Azzawi;Shahad H. Mtashar
    • Structural Monitoring and Maintenance
    • /
    • 제10권1호
    • /
    • pp.1-23
    • /
    • 2023
  • Various efforts have been made to reduce the weight of concrete slabs while preserving their flexural strength. This will result in reducing deflection and allows the utilization of longer spans. The top zone of the slab requires concrete to create the compression block for flexural strength, and the tension zone needs concrete to join with reinforcing for flexural strength. Also, the top and bottom slab faces must be linked to transmit stresses. Voided slab systems were and are still used to make long-span slab buildings lighter. Eight slab specimens of (1000*1000 (1000*1000 mm2) were cast and tested as two-way simply supported slabs in this research. The tested specimens consist of one solid slab and seven voided slabs with the following variables (type of slab solid and voided), thickness of slab (100 and 125 mm), presence of steel fibers (0% and 1%), and the number of GFRP layers). The voids in slabs were made using high-density polystyrene of dimensions (200*200*50 mm) with a central hole of dimensions (50*50*50 mm) at the ineffective concrete zones to give a reduction in weight by (34% to 38%). The slabs were tested as simply supported slabs under partial uniform loading. The results of specimens subjected to monotonic loading show that the combined strengthening by steel fibers and GFRP sheets of the concrete specimen (V-125-2GF-1%) shows the least deflection, deflection (4.6 mm), good ultimate loading capacity (192 MPa), large stiffness at cracking and at ultimate (57 and 41.74) respectively, more ductility (1.44), and high energy absorption (1344.83 kN.mm); so it's the best specimen that can be used as a voided slab under this type of loading.

Towards attaining efficient management of berth maintenance in Saudi Arabian Industrial Ports

  • Mohammed E. Shaawat;Abdullah Binomar;Abdulaziz S. Almohassen;Khalid Saqer. Alotaibi;Mahmoud Sodangi;Ahmad Aftab
    • Structural Monitoring and Maintenance
    • /
    • 제10권1호
    • /
    • pp.25-42
    • /
    • 2023
  • Despite the significance of ports as critical economic infrastructure, the berth facilities usually deteriorate due to heavy loading, unloading, aging, environmental weather conditions, marine growths, and lack of efficient maintenance management. Marine berths require proactive maintenance management to limit deterioration and defects as no berth facility is maintenance-free. Thus, delay in carrying out maintenance work for the marine berths can be devastating to the operational process involving ship entry, loading, and unloading operations. The aim of this research is to coordinate both operations work, and maintenance works that take place inside the berth of a local industrial port in Saudi Arabia, by developing a novel framework that integrates both works without affecting the efficiency and functionality of the berth. The study focused on defining the operational process of the port and identifying the elements with direct and indirect effects. In addition to determining the priority for the entry of ships inside the berth, it also identified the factors involved in designing a framework that included maintenance work as a component of the monthly berth occupancy schedule. By applying a mathematical model, a framework was established, which includes all the important elements of the process. As a result of the mathematical method formulation process, a database was designed that organizes and coordinates the operations of all berths within the port. This creates time to carry out the required maintenance work monthly as well as ease of coordination with the contractors responsible for the implementation of those works.

Feasibility study on an acceleration signal-based translational and rotational mode shape estimation approach utilizing the linear transformation matrix

  • Seung-Hun Sung;Gil-Yong Lee;In-Ho Kim
    • Smart Structures and Systems
    • /
    • 제32권1호
    • /
    • pp.1-7
    • /
    • 2023
  • In modal analysis, the mode shape reflects the vibration characteristics of the structure, and thus it is widely performed for finite element model updating and structural health monitoring. Generally, the acceleration-based mode shape is suitable to express the characteristics of structures for the translational vibration; however, it is difficult to represent the rotational mode at boundary conditions. A tilt sensor and gyroscope capable of measuring rotational mode are used to analyze the overall behavior of the structure, but extracting its mode shape is the major challenge under the small vibration always. Herein, we conducted a feasibility study on a multi-mode shape estimating approach utilizing a single physical quantity signal. The basic concept of the proposed method is to receive multi-metric dynamic responses from two sensors and obtain mode shapes through bridge loading test with relatively large deformation. In addition, the linear transformation matrix for estimating two mode shapes is derived, and the mode shape based on the gyro sensor data is obtained by acceleration response using ambient vibration. Because the structure's behavior with respect to translational and rotational mode can be confirmed, the proposed method can obtain the total response of the structure considering boundary conditions. To verify the feasibility of the proposed method, we pre-measured dynamic data acquired from five accelerometers and five gyro sensors in a lab-scale test considering bridge structures, and obtained a linear transformation matrix for estimating the multi-mode shapes. In addition, the mode shapes for two physical quantities could be extracted by using only the acceleration data. Finally, the mode shapes estimated by the proposed method were compared with the mode shapes obtained from the two sensors. This study confirmed the applicability of the multi-mode shape estimation approach for accurate damage assessment using multi-dimensional mode shapes of bridge structures, and can be used to evaluate the behavior of structures under ambient vibration.

An Adaptive Tuned Heave Plate (ATHP) for suppressing heave motion of floating platforms

  • Ruisheng Ma;Kaiming Bi;Haoran Zuo
    • Smart Structures and Systems
    • /
    • 제31권3호
    • /
    • pp.283-299
    • /
    • 2023
  • Structural stability of floating platforms has long since been a crucial issue in the field of marine engineering. Excessive motions would not only deteriorate the operating conditions but also seriously impact the safety, service life, and production efficiency. In recent decades, several control devices have been proposed to reduce unwanted motions, and an attractive one is the tuned heave plate (THP). However, the THP system may reduce or even lose its effectiveness when it is mistuned due to the shift of dominant wave frequency. In the present study, a novel adaptive tuned heave plate (ATHP) is proposed based on inerter by adjusting its inertance, which allows to overcome the limitation of the conventional THP and realize adaptations to the dominant wave frequencies in real time. Specifically, the analytical model of a representative semisubmersible platform (SSP) equipped with an ATHP is created, and the equations of motion are formulated accordingly. Two optimization strategies (i.e., J1 and J2 optimizations) are developed to determine the optimum design parameters of ATHP. The control effectiveness of the optimized ATHP is then examined in the frequency domain by comparing to those without control and controlled by the conventional THP. Moreover, parametric analyses are systematically performed to evaluate the influences of the pre-specified frequency ratio, damping ratio, heave plate sizes, peak periods and wave heights on the performance of ATHP. Furthermore, a Simulink model is also developed to examine the control performance of ATHP in the time domain. It is demonstrated that the proposed ATHP could adaptively adjust the optimum inertance-to-mass ratio by tracking the dominant wave frequencies in real time, and the proposed system shows better control performance than the conventional THP.

A Study on the Role of Locomotion Orientation as an Antecedent of Salespeople' Selling Behavior

  • Lee, Ihn Goo;Ji, Seong Goo
    • Asia Marketing Journal
    • /
    • 제15권2호
    • /
    • pp.175-194
    • /
    • 2013
  • The purpose of this study is to investigate the effects of the locomotion orientation on salespeople' sales performance with the mediating effect of selling behavior(adaptive selling behavior, SOCO). And we figure out the relationship between customer-oriented selling behavior and adaptive selling behavior because those relationships are not clear. The authors infer research hypotheses based on literature review. We have confirmed the reliability and validity test and those results can be acceptable. Hypotheses test were conducted with structural equation modeling, AMOS. All paths in the research model reasoned by authors have been supported statistically at the significant level. This study with the theoretical implications is as follows. First, this study is the first attempt to investigate the path between locomotion orientation and adaptive selling behavior and SOCO. Secondly, there is an empirical conflict between our study and Franke and Park(2006)'s study. Our study was contradictory to Franke and Park(2006)'s consequences. And so, figuring out clearly those causal paths remains. This study with practical implications are as follows. First of all, the salespeople' selling performance was affected by adaptive selling behavior, customer-oriented selling behavior, and sales-oriented activities, such as the importance of selling behavior once again proven. It is necessary to enhance the capabilities that can be transformed into action appropriate to the needs of customers each sales step-by-step in the process of salespeople for various system through education and incentives, and to interact with customers and understand their customers relative to salespeople will. In order to enhance adaptive selling behavior, the company needs to do educational program and monitoring system with the positional promotion when salespeople get the high adaptive selling behavior. Secondly, the locomotion orientation of the salespeople is to cause this selling behavior. Management style to increase locomotion orientation is needed, which means, salespeople' superior about something should be conducted. In order to stimulate the selling behavior of the salespeople, most supervisors should use some managerial tools such as feedback, engagement, and rewards.

  • PDF

A vibration-based approach for detecting arch dam damage using RBF neural networks and Jaya algorithms

  • Ali Zar;Zahoor Hussain;Muhammad Akbar;Bassam A. Tayeh;Zhibin Lin
    • Smart Structures and Systems
    • /
    • 제32권5호
    • /
    • pp.319-338
    • /
    • 2023
  • The study presents a new hybrid data-driven method by combining radial basis functions neural networks (RBF-NN) with the Jaya algorithm (JA) to provide effective structural health monitoring of arch dams. The novelty of this approach lies in that only one user-defined parameter is required and thus can increase its effectiveness and efficiency, as compared to other machine learning techniques that often require processing a large amount of training and testing model parameters and hyper-parameters, with high time-consuming. This approach seeks rapid damage detection in arch dams under dynamic conditions, to prevent potential disasters, by utilizing the RBF-NNN to seamlessly integrate the dynamic elastic modulus (DEM) and modal parameters (such as natural frequency and mode shape) as damage indicators. To determine the dynamic characteristics of the arch dam, the JA sequentially optimizes an objective function rooted in vibration-based data sets. Two case studies of hyperbolic concrete arch dams were carefully designed using finite element simulation to demonstrate the effectiveness of the RBF-NN model, in conjunction with the Jaya algorithm. The testing results demonstrated that the proposed methods could exhibit significant computational time-savings, while effectively detecting damage in arch dam structures with complex nonlinearities. Furthermore, despite training data contaminated with a high level of noise, the RBF-NN and JA fusion remained the robustness, with high accuracy.

Time-varying characteristics analysis of vehicle-bridge interaction system using an accurate time-frequency method

  • Tian-Li Huang;Lei Tang;Chen-Lu Zhan;Xu-Qiang Shang;Ning-Bo Wang;Wei-Xin Ren
    • Smart Structures and Systems
    • /
    • 제33권2호
    • /
    • pp.145-163
    • /
    • 2024
  • The evaluation of dynamic characteristics of bridges under operational traffic loads is a crucial aspect of bridge structural health monitoring. In the vehicle-bridge interaction (VBI) system, the vibration responses of bridge exhibit time-varying characteristics. To address this issue, an accurate time-frequency analysis method that combines the autoregressive power spectrum based empirical wavelet transform (AR-EWT) and local maximum synchrosqueezing transform (LMSST) is proposed to identify the time-varying instantaneous frequencies (IFs) of the bridge in the VBI system. The AR-EWT method decomposes the vibration response of the bridge into mono-component signals. Then, LMSST is employed to identify the IFs of each mono-component signal. The AR-EWT combined with the LMSST method (AR-EWT+LMSST) can resolve the problem that LMSST cannot effectively identify the multi-component signals with weak amplitude components. The proposed AR-EWT+LMSST method is compared with some advanced time-frequency analysis techniques such as synchrosqueezing transform (SST), synchroextracting transform (SET), and LMSST. The results demonstrate that the proposed AR-EWT+LMSST method can improve the accuracy of identified IFs. The effectiveness and applicability of the proposed method are validated through a multi-component signal, a VBI numerical model with a four-degree-of-freedom half-car, and a VBI model experiment. The effect of vehicle characteristics, vehicle speed, and road surface roughness on the identified IFs of bridge are investigated.