• Title/Summary/Keyword: structural monitoring

Search Result 1,883, Processing Time 0.025 seconds

A Study on Applicability of Wireless Impedance Sensor Nodes Technique for Tensile Force Monitoring of Structural Cables (구조용 케이블의 인장력 모니터링을 위한 무선 임피던스 센서노드 기술의 적용성에 관한 연구)

  • Park, Jae-Hyung;Hong, Dong-Soo;Kim, Jeong-Tae;Na, Won-Bae;Cho, Hyun-Man
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.21-31
    • /
    • 2010
  • In this study, a technique that uses wireless impedance sensor nodes is proposed to monitor tensile force of structural cable. To achieve this goal, the following approaches were implemented. First, a wireless impedance sensor node was designed for automated and cost-efficient prestress-loss monitoring. Second, an impedance-based algorithm was embedded in the wireless impedance sensor node for autonomous structural health monitoring of structural cables. Third, a tensile force monitoring technique that uses an interface plate for structural cables was proposed to overcome the limitations of the wireless impedance sensor node such as its narrow-band measurable frequency ranges. Finally, the applicability of the wireless impedance sensor node and the technique that uses the interface washer were evaluated in a lab-scaled prestressed concrete (PSC) girder model with internal and external tendons for which several prestress-loss scenarios were experimentally monitored with the wireless impedance sensor nodes.

Buffeting-induced stresses in a long suspension bridge: structural health monitoring oriented stress analysis

  • Liu, T.T.;Xu, Y.L.;Zhang, W.S.;Wong, K.Y.;Zhou, H.J.;Chan, K.W.Y.
    • Wind and Structures
    • /
    • v.12 no.6
    • /
    • pp.479-504
    • /
    • 2009
  • Structural health monitoring (SHM) systems have been recently embraced in long span cable-supported bridges, in which buffeting-induced stress monitoring is one of the tasks to ensure the safety of the bridge under strong winds. In line with this task, this paper presents a SHM-oriented finite element model (FEM) for the Tsing Ma suspension bridge in Hong Kong so that stresses/strains in important bridge components can be directly computed and compared with measured ones. A numerical procedure for buffeting induced stress analysis of the bridge based on the established FEM is then presented. Significant improvements of the present procedure are that the effects of the spatial distribution of both buffeting forces and self-excited forces on the bridge deck structure are taken into account and the local structural behaviour linked to strain/stress, which is prone to cause local damage, are estimated directly. The field measurement data including wind, acceleration and stress recorded by the wind and structural health monitoring system (WASHMS) installed on the bridge during Typhoon York are analyzed and compared with the numerical results. The results show that the proposed procedure has advantages over the typical equivalent beam finite element models.

Structural Health Monitoring of Full-Scale Concrete Girder Bridge Using Acceleration Response (가속도 응답을 이용한 실물 콘크리트 거더 교량의 구조건전성 모니터링)

  • Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.165-174
    • /
    • 2010
  • In this paper, a two-phase structural health monitoring system using acceleration response signatures are presented to firstly alarm the change in structural condition and to secondly detect the changed location for full-scale concrete girder bridges. Firstly, Mihocheon Bridge which is a two-span continuous concrete girder bridge is selected as the target structure. The dynamic response features of Mihocheon Bridge are extracted by forced vibration test using bowling ball. Secondly, the damage alarming occurrence and the damage localization techniques are selected to design two-phase structural health monitoring system for Mihocheon Bridge. As the damage alarming techniques, auto-regressive model using time-domain signatures, correlation coefficient of frequency response function and frequency response ratio assurance criterion are selected. As the damage localization technique, modal strain energy-based damage index method is selected. Finally, the feasibility of two-phase structural health monitoring systems is evaluated from static loading tests using a dump truck.

Structural health monitoring data anomaly detection by transformer enhanced densely connected neural networks

  • Jun, Li;Wupeng, Chen;Gao, Fan
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.613-626
    • /
    • 2022
  • Guaranteeing the quality and integrity of structural health monitoring (SHM) data is very important for an effective assessment of structural condition. However, sensory system may malfunction due to sensor fault or harsh operational environment, resulting in multiple types of data anomaly existing in the measured data. Efficiently and automatically identifying anomalies from the vast amounts of measured data is significant for assessing the structural conditions and early warning for structural failure in SHM. The major challenges of current automated data anomaly detection methods are the imbalance of dataset categories. In terms of the feature of actual anomalous data, this paper proposes a data anomaly detection method based on data-level and deep learning technique for SHM of civil engineering structures. The proposed method consists of a data balancing phase to prepare a comprehensive training dataset based on data-level technique, and an anomaly detection phase based on a sophisticatedly designed network. The advanced densely connected convolutional network (DenseNet) and Transformer encoder are embedded in the specific network to facilitate extraction of both detail and global features of response data, and to establish the mapping between the highest level of abstractive features and data anomaly class. Numerical studies on a steel frame model are conducted to evaluate the performance and noise immunity of using the proposed network for data anomaly detection. The applicability of the proposed method for data anomaly classification is validated with the measured data of a practical supertall structure. The proposed method presents a remarkable performance on data anomaly detection, which reaches a 95.7% overall accuracy with practical engineering structural monitoring data, which demonstrates the effectiveness of data balancing and the robust classification capability of the proposed network.

Develoment of high-sensitivity wireless strain sensor for structural health monitoring

  • Jo, Hongki;Park, Jong-Woong;Spencer, B.F. Jr.;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • v.11 no.5
    • /
    • pp.477-496
    • /
    • 2013
  • Due to their cost-effectiveness and ease of installation, wireless smart sensors (WSS) have received considerable recent attention for structural health monitoring of civil infrastructure. Though various wireless smart sensor networks (WSSN) have been successfully implemented for full-scale structural health monitoring (SHM) applications, monitoring of low-level ambient strain still remains a challenging problem for WSS due to A/D converter (ADC) resolution, inherent circuit noise, and the need for automatic operation. In this paper, the design and validation of high-precision strain sensor board for the Imote2 WSS platform and its application to SHM of a cable-stayed bridge are presented. By accurate and automated balancing of the Wheatstone bridge, signal amplification of up to 2507-times can be obtained, while keeping signal mean close to the center of the ADC span, which allows utilization of the full span of the ADC. For better applicability to SHM for real-world structures, temperature compensation and shunt calibration are also implemented. Moreover, the sensor board has been designed to accommodate a friction-type magnet strain sensor, in addition to traditional foil-type strain gages, facilitating fast and easy deployment. The wireless strain sensor board performance is verified through both laboratory-scale tests and deployment on a full-scale cable-stayed bridge.

Structural health monitoring of innovative civil engineering structures in Mainland China

  • Li, Hong-Nan;Li, Dong-Sheng;Ren, Liang;Yi, Ting-Hua;Jia, Zi-Guang;LI, Kun-Peng
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.1
    • /
    • pp.1-32
    • /
    • 2016
  • This paper describes the backgrounds, motivations and recent history of structural health monitoring (SHM) developments to various types of engineering structures. Extensive applications of SHM technologies in bridges, high-rise buildings, sport avenues, offshore platforms, underground structures, dams, etc. in mainland China are summarily categorized and listed in tables. Sensors used in implementations, their deployment, damage identification strategies if applicable, preliminary monitoring achievements and experience are presented in the lists. Finally, existing problems and promising research efforts in civil SHM are discussed, highlighting challenges and future trends.

Development of ELID Monitoring System and its Application to ELID Grinding of Structural Ceramics (ELID 연삭 모니터링 시스템의 개발과 구조 세라믹스 적용 사례)

  • Kwak, Tae-Soo;Kim, Gyung-Nyun;Kwak, Ihn-Sil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1245-1251
    • /
    • 2013
  • This study has focused on development of ELID monitoring system and its application to ELID grinding of structural ceramics. ELID monitoring system was consisted of grinding equipment, ELID power supply, grinding wheel, electrode and monitoring program. It can give a real time data to check spindle grinding resistance, wheel revolution, dressing current and voltage in ELID grinding process. The performance of developed system was evaluated by applying to grinding of structural ceramics, silicon carbide and alumina. As the results of experiments, monitored data for spindle resistance and ELID dressing current was useful to check steady-state ELID grinding process. From the comparison of spindle resistance between ELID grinding and conventional grinding process according to change of depth of cut, it could be confirmed that the spindle resistance in ELID grinding was lower than conventional grinding process.

Practicalities of structural health monitoring

  • Shrive, P.L.;Brown, T.G.;Shrive, N.G.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.357-367
    • /
    • 2009
  • Structural Health Monitoring (SHM), particularly remote monitoring, is an emerging field with great potential to help infrastructure owners obtain more and up-to-date knowledge of their structures. The methodology could provide supplemental information to guide the frequency and extent of visual inspections, and the possible need for maintenance. The instrumentation for a SHM system needs to be developed with longevity and the objectives for the system in mind. Sensors need to be selected for reliability and durability, sited where they provide the maximum information for the objectives, and where they can be accessed and replaced should the need arise over the monitoring period. With the rapid changes now occurring with sensors and software, flexibility needs to be in place to allow the system to be upgraded over time. Damage detection needs to be considered in terms of the type of damage that needs to be detected, informing maintenance requirements, and how detection can be achieved. Current vibration analysis techniques appear not yet to have achieved the necessary sensitivity for that purpose. Societal factors will influence the design of a SHM system in terms of the sophistication of the instrumentation and methodology employed.

Real time crack detection using mountable comparative vacuum monitoring sensors

  • Roach, D.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.317-328
    • /
    • 2009
  • Current maintenance operations and integrity checks on a wide array of structures require personnel entry into normally-inaccessible or hazardous areas to perform necessary nondestructive inspections. To gain access for these inspections, structure must be disassembled and removed or personnel must be transported to remote locations. The use of in-situ sensors, coupled with remote interrogation, can be employed to overcome a myriad of inspection impediments stemming from accessibility limitations, complex geometries, the location and depth of hidden damage, and the isolated location of the structure. Furthermore, prevention of unexpected flaw growth and structural failure could be improved if on-board health monitoring systems were used to more regularly assess structural integrity. A research program has been completed to develop and validate Comparative Vacuum Monitoring (CVM) Sensors for surface crack detection. Statistical methods using one-sided tolerance intervals were employed to derive Probability of Detection (POD) levels for a wide array of application scenarios. Multi-year field tests were also conducted to study the deployment and long-term operation of CVM sensors on aircraft. This paper presents the quantitative crack detection capabilities of the CVM sensor, its performance in actual flight environments, and the prospects for structural health monitoring applications on aircraft and other civil structures.

Safety Assessment and Behavior Control System using Monitoring of Segmental PSC Box Girder Bridges during Construction (세그멘탈 PSC박스거더교량의 시공간 계측모니터링을 통한 확률적 구조안정성 평가 및 제어 시스템)

  • Shin, Jae-Chul;Cho, Hyo-Nam;Park, Kyung-Hoon;Bae, Yong-Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.3
    • /
    • pp.191-201
    • /
    • 2001
  • In spite of the increasing construction of segmental PSC box girder bridges, the techniques associated with real-time monitoring, construction control and safety assessment during construction have been less developed compared with the construction techniques. Thus, the development of an integrated system including real-time measurement and monitoring, control and safety assessment system during construction is necessary fur more safe and precise construction of the bridges. This study presents a prototype integrated monitoring system for preventing abnormal behavior and accidents under construction stages, that consist of behavior control system for precise construction, reliability-based safety assessment system, and structural analysis. Also, a prototype software system is developed on the basis of the proposed model. It is successfully applied to the Sea-Hae Grand Bridge built by FCM. The integrated system model and software system can be utilized for the safe and precise construction of segmental PSC bridges during construction.

  • PDF