• Title/Summary/Keyword: structural materials

Search Result 5,861, Processing Time 0.035 seconds

3-D Analysis of Semiconductor Surface by Using Photoacoustic Microscopy (광음향 현미경법을 이용한 반도체 표면의 3차원적 구조 분석)

  • Lee, Eung-Joo;Choi, Ok-Lim;Lim, Jong-Tae;Kim, Ji-Woong;Choi, Joong-Gill
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.6
    • /
    • pp.553-560
    • /
    • 2004
  • In this experiment, a three dimensional structure analysis was carried out to examine the surface defects of semiconductor made artificially on known scale. It was investigated the three dimensional imaging according to the sample depth and the thermal diffusivity as well as the carrier transport properties. The thermal diffusivity measurement of the intrinsic GaAs semiconductor was also analyzed by the difference of frequency-dependence photoacoustic signals from the sample surface of different conditions. Thermal properties such as thermal diffusion length or thermal diffusivity of the Si wafer with and without defects on the surface were obtained by interpreting the frequency dependence of the PA signals. As a result, the photoacoustic signal is found to have the dependency on the shape and depth of the defects so that their structure of the defects can be analyzed. This method demonstrates the possibility of the application to the detection of the defects, cracks, and shortage of circuits on surface or sub-surface of the semiconductors and ceramic materials as a nondestructive testing(NDT) and a nondestructive evaluation(NDE) technique.

Formation of Layered Bi5Ti3FeO15 Perovskite in Bi2O3-TiO2-Fe2O3 Containing System

  • Borse, Pramod H.;Yoon, Sang-Su;Jang, Jum-Suk;Lee, Jae-Sung;Hong, Tae-Eun;Jeong, Euh-Duck;Won, Mi-Sook;Jung, Ok-Sang;Shim, Yoon-Bo;Kim, Hyun-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.3011-3015
    • /
    • 2009
  • Structural and thermo-analytical studies were carried out to understand the phase formation kinetics of the single phase $Bi_5Ti_3FeO_{15}$ (BTFO) nanocrystals in $Bi_2O_3-Fe_2O_3-TiO_2$, during the polymerized complex (PC) synthesis method. The crystallization of Aurivillius phase $Bi_5Ti_3FeO_{15}$ layered perovskite was found to be initiated and achieved under the temperature conditions in the range of ${\sim}$800 to 1050$^{\circ}C$. The activation energy for grain growth of $Bi_5Ti_3FeO_{15}$ nanocrystals (NCs) was very low in case of NCs formed by PC (2.61 kJ/mol) than that formed by the solid state reaction (SSR) method (10.9 kJ/mol). The energy involved in the phase transformation of Aurivillius phase $Bi_5Ti_3FeO_{15}$ from $Bi_2O_3-Fe_2O_3-TiO_2$ system was ${\sim}$ 69.8 kJ/mol. The formation kinetics study of $Bi_5Ti_3FeO_{15}$ synthesized by SSR and PC methods would not only render a large impact in the nanocrystalline material development but also in achieving highly efficient visible photocatalysts.

A Study on Analysis Method to Evaluate Influence of Damage on Composite Layer in Type3 Composite Cylinder (Type3 복합재료 압력용기의 복합재층 손상에 따른 영향성 평가를 위한 해석기법에 관한 연구)

  • Lee, Kyo-Min;Park, Ji-Sang;Lee, Hak-Gu;Kim, Yeong-Seop
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.7-13
    • /
    • 2010
  • Type3 cylinder is a composite pressure vessel fully over-wrapped with carbon/epoxy composite layers over an aluminum liner, which is the most ideal and safe high pressure gas container for CNG vehicles due to the lightweight and the leakage-before-burst characteristics. During service in CNG vehicle, if a fiber cut damage occurs in outer composite layers, it can degrade structural performance, reducing cycling life from the original design life. In this study, finite element modeling and analysis technique for the composite cylinder with fiber-cut crack damage is presented. Because FE analysis of type3 cylinder is path dependant due to plastic deformation of aluminum liner in autofrettage process, method to introduce a crack into FE model affect analysis result. A crack should be introduced after autofrettage in analysis step considering real circumstances where crack occurs during usage in service. For realistic simulation of this situation, FE modeling and analysis technique introducing a crack in the middle of analysis step is presented and the results are compared with usual FE analysis which has initial crack in the model from the beginning of analysis. Proposed analysis technique can be used effectively in the evaluation of influence of damage on composite layers of type3 cylinder and establish inspection criteria of composite cylinder in service.

An Overview on the Physicochemical Properties and Photocatalytic Pollutant Removal Performances of TiO2-incorporated Cementitious Composites (TiO2 혼입 시멘트 복합체의 물리·화학적 특성 및 광촉매 반응을 이용한 오염물 제거 성능에 대한 개요)

  • Seo, J.H.;Yoon, H.N.;Kim, S.H.;Bae, S.J.;Jang, D.I.;Kil, T.G.;Park, S.M.;Lee, H.K.
    • Composites Research
    • /
    • v.33 no.2
    • /
    • pp.68-75
    • /
    • 2020
  • Recently, the use of TiO2 as a phtocatalyst has been diversely investigated due to its excellent durability performance and high photocatalytic reaction efficiency. Active researches have particularly focused on the development of TiO2-incorporated cementitious composites in order to remove the atmospheric pollutants. Furthermore, the potential utilization of TiO2-incorporated cementitious composites as road accessories such as tunnels, road median separators and soundproof walls in the form of tiles, blocks and structural components has been widely examined. In this regard, a thorough understanding on the material characteristics of TiO2-incorporated cementitious composites should be preceded. The present overview article, therefore, revisits previous studies of TiO2-incorporated cementitious composites and summarizes their various physicochemical properties and atmospheric pollutants removal performance.

Low Frequency Fluctuation Component Analysis in Active Stimulation fMRI Paradigm (활성자극 파라다임 fMRI에서 저주파요동 성분분석)

  • Na, Sung-Min;Park, Hyun-Jung;Chang, Yong-Min
    • Investigative Magnetic Resonance Imaging
    • /
    • v.14 no.2
    • /
    • pp.115-120
    • /
    • 2010
  • Purpose : To separate and evaluate the low frequency spontaneous fluctuation BOLD signals from the functional magnetic resonance imaging data using sensorimotor active task. Materials and Methods : Twenty female archery players and twenty three control subjects were included in this study. Finger-tapping task consisted of three cycles of right finger tapping, with a subsequent 30 second rest. Blood oxygenation level-dependent (BOLD) data were collected using $T2^*$-weighted echo planar imaging at a 3.0 T scanner. A 3-D FSPGR T1-weighted images were used for structural reference. Image processing and statistical analyses were performed using SPM5 for active finger-tapping task and GIFT program was used for statistical analyses of low frequency spontaneous fluctuation BOLD signal. Results : Both groups showed the activation in the left primary motor cortex and supplemental motor area and in the right cerebellum for right finger-tapping task. ICA analysis using GIFT revealed independent components corresponding to contralateral and ipsilateral sensorimotor network and cognitive-related neural network. Conclusion : The current study demonstrated that the low frequency spontaneous fluctuation BOLD signals can be separated from the fMRI data using finger tapping paradigm. Also, it was found that these independent components correspond to spontaneous and coherent neural activity in the primary sensorimotor network and in the motor-cognitive network.

Exchange-coupling Interaction and Magnetic Properties of BaFe12O19/Ni0.5Zn0.5Fe2O4 Nanocomposite Ferrite (BaFe12O19/Ni0.5Zn0.5Fe2O4 나노복합체 Ferrite의 Exchange-coupling 상호 작용과 자기 특성)

  • Oh, Young-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.3
    • /
    • pp.81-85
    • /
    • 2014
  • Nano-sized Ba-ferrite, Ni-Zn ferrite and $BaFe_{12}O_{19}/Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanocomposite ferrite were prepared by sol-gel combustion method. Nanocomposite was calcined at temperature range of $600{\sim}900^{\circ}C$ for 1 h. According to the diffraction patterns, hard/soft nanocomposite was indicated to the coexistence of the magnetoplumbite structural $BaFe_{12}O_{19}$ and spinel $Ni_{0.5}Zn_{0.5}Fe_2O_4$ and agree with the standard data (JCPDS 10-0325). The particle size of nanocomposite turn out to be less than 90 nm. The nanocomposite ferrite shows a single-phase magnetization behavior, implying that the hard magnetic phase and soft magnetic phase were well exchange-coupled. The specific saturation magnetization ($M_s$) of the nanocomposite is located between hard ($BaFe_{12}O_{19}$) and soft ferrite ($Ni_{0.5}Zn_{0.5}Fe_2O_4$). The remanence (Mr) of nanocomposite ferrite is much higher than that for the individual $BaFe_{12}O_{19}$ and $Ni_{0.5}Zn_{0.5}Fe_2O_4$ ferrite. $(BH)_{max}$ is increased, generally.

A Study on the Behavior & Buckling Characteristics of Single-Layer Latticed Domes in the Erection Process (단층 래티스 돔의 Erection 중 거동 및 좌굴 특성)

  • Jung, Hwan-Mok;Kim, Cheol-Hwan;Hwang, Dong-Gyu
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.3
    • /
    • pp.45-51
    • /
    • 2008
  • A single layer-latticed dome is advantageous for large span structures because it is very stiff despite the light weight of the structure itself. However, this structure becomes easily unstable during erection due to its large size. The Block method is popular with the large span structures. A partial block of the dome is fabricated on the ground and lifted by crane to a designated location of structures. The lifting point selection is very important to create a stable erection and to avoid buckling of members during the erection. The purpose of this study is to analyze the structural behaviors and buckling characteristics according to the lifting point of single-layer latticed domes with triangle network in order to take materials about the safe and economic erection. The conclusions are obtained as follow. 1) The buckling strength of the block part varies with the location of lifting points when it is erected. In case, the height of the dome is lower, the effort of buckling strength of the structure is higher. 2) In buckling strength, the effect of the lifting rope length is smaller than it of the lifting points change.

  • PDF

Filter Media Specifications for Low Impact Development: A Review of Current Guidelines and Applications (LID 시설 여재에 관한 기술지침 및 적용에 관한 고찰)

  • Guerra, Heidi B.;Kim, Lee-Hyung;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.321-333
    • /
    • 2019
  • A primary aspect of low impact development (LID) design that affects performance efficiency, maintenance frequency, and lifespan of the facility is the type of filter media as well as the arrangement or media profile. Several LID guidelines providing media specifications are currently available and numerous studies have been published presenting the effectiveness of these systems. While some results are similar and consistent, some of them still varies and only a few focuses on the effect of filter media type and arrangement on system performance. This creates a certain level of uncertainty when it comes to filter media selection and design. In this review, a synthesis of filter media specifications from several LID design guidelines are presented and relevant results from different laboratory and field studies are highlighted. The LID systems are first classified as infiltration or non-infiltration structures, and vegetated or non-vegetated structures. Typical profiles of the media according to classification are shown including the different layers, materials, and depth. In addition, results from previous studies regarding the effect of filter media characteristics on hydraulic and hydrologic functions as well as pollutant removal are compared. Other considerations such as organic media leaching, clogging, media washing, and handling during construction were also briefly discussed. This review aims to provide a general guideline that can contribute to proper media selection and design for structural LIDs. In addition, it also identifies opportunities for future research.

Mechanical Properties of Porous Concrete For Pavement Using Recycled Aggregate and Polymer (재생골재와 폴리머를 이용한 포장용 포러스 콘크리트의 역학적 특성)

  • Park Seung-Bum;Yoon Eui-Sik;Seo Dae-Seuk;Lee Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.595-602
    • /
    • 2005
  • The purpose of this study is to utilize recycled concrete aggregates as permeable pavement materials. This study evaluates mechanical properties and durability of porous concrete depending on mixing rates of recycled aggregates and polyme. As a result, void ratio and permeability coefficient of porous concrete for pavement increased a little as mixing rate of recycled aggregates increased. Void ratio and permeability coefficient increased a lot as mixing rate of polymer increased. As polymer was mixed $20\%$, national regulation of permeable concrete for pavement($8\%$ and 0.01cm/sec) was met. Compressive strength and flexural strength decreased as mixing rate of recycled aggregates increased but they increased a lot as mixing rate of polymer increased. Even when recycled aggregates were mixed $75\%\;with\;10\%$ polymer mixed, national regulation of pavement concrete(18MPa and 4.5MPa) was met. In addition, regarding sliding resistance, BPN increased as mixing rate of recycled aggregates increased. But BPN decreased as polymer was mixed. Compared to crushed stone aggregates, abrasion resistance and freeze-thaw resistance decreased as mixing rate of recycled aggregates Increased. When polymer was mixed, abrasion resistance and freeze-thaw resistance improved remarkably. Compared to non-mixture, $10\%$ mixture of polymer improved abrasion resistance and freeze-thaw resistance about $8.6\%$ and 3.8times respectively.

Flexural Analysis of RC Beam Considering Autogenous Shrinkage Model (자기수축 모델을 고려한 철근콘크리트 보의 휨 거동 해석)

  • Yoo Sung-Won;Soh Yang-Sub;Cho Min-Jung;Koh Kyung-Taek;Jung Sang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.621-628
    • /
    • 2005
  • Recently, it is noticed that autogenous shrinkage of high-performance concrete causes early crack in high performance concrete structures. The purpose of the present study is to derive a realistic equation to estimate the autogenous shrinkage of high performance concrete and to apply to structural analysis. For this purpose, several series of concrete specimens have been tested. When water-binder ratio is fixed to $30\%$, major test variables were the type and contents of mineral admixture. The autogenous shrinkage of HPC with fly ash slightly decreased than that of OPC concrete, but the use of blast furnace slag increased with the autogenous shrinkage. A prediction equation to estimate the autogenous shrinkage of HPC with mineral admixture was derived and proposed in this study. The proposed equation show reasonably good correlation with test data on autogenous shrinkage of HPC with mineral admixture. The finite element program developed in this study provides the useful tool for the flexural analysis including the autogenous shrinkage model. By this program, we know that the tensile stress considering the autogenous shrinkage of reinforced concrete structures increase $20\~27\%$ than that not considering.