Browse > Article
http://dx.doi.org/10.5012/jkcs.2004.48.6.553

3-D Analysis of Semiconductor Surface by Using Photoacoustic Microscopy  

Lee, Eung-Joo (Department of chemistry, Yonsei University)
Choi, Ok-Lim (Department of chemistry, Yonsei University)
Lim, Jong-Tae (Department of chemistry, Yonsei University)
Kim, Ji-Woong (Department of chemistry, Yonsei University)
Choi, Joong-Gill (Department of chemistry, Yonsei University)
Publication Information
Abstract
In this experiment, a three dimensional structure analysis was carried out to examine the surface defects of semiconductor made artificially on known scale. It was investigated the three dimensional imaging according to the sample depth and the thermal diffusivity as well as the carrier transport properties. The thermal diffusivity measurement of the intrinsic GaAs semiconductor was also analyzed by the difference of frequency-dependence photoacoustic signals from the sample surface of different conditions. Thermal properties such as thermal diffusion length or thermal diffusivity of the Si wafer with and without defects on the surface were obtained by interpreting the frequency dependence of the PA signals. As a result, the photoacoustic signal is found to have the dependency on the shape and depth of the defects so that their structure of the defects can be analyzed. This method demonstrates the possibility of the application to the detection of the defects, cracks, and shortage of circuits on surface or sub-surface of the semiconductors and ceramic materials as a nondestructive testing(NDT) and a nondestructive evaluation(NDE) technique.
Keywords
Photoacoustic Microscopy; Semiconductor Surface; 3-D Structural Analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sawada, T. and Kasai, M. Photoacoustic and ThermalWave Phenomena in Semiconductors; North-Holland:New York, 1987; p 5.
2 McFarlane, R. A.; Hess, L. D.; Olson, G. L. IEEE Ultrason.Symp. Pro. 1980, 628.
3 Wong, Y. H.; Thomas, R. L.; Hawkins, G. F. Appl.Phys. Letts. 1978, 32, 538.   DOI
4 Wickramasinghe, H. K.; Bray, R. C.; Jipson, V.; Quate,C. F.; Salcedo, J. R. Appl. Phys. Letts. 1978, 33, 923.   DOI
5 Busse, G.; Rosencwaig, A. Appl. Phys. Letts. 1980, 36, 815.   DOI
6 Mandaelis A. Photoacoustic and Thermal wave Phenomenain Semiconductors; Elsevier Science Publishing Co., Inc., 1987; p 23.
7 Favro, L. D.; Kuo, P. K.; Pouch, J. J.; Thomas, R. L.Appl. Phys. Letts. 1980, 36, 953.   DOI
8 Lim, J. T.; Choi, J. G.; Bak, Y. H.; Park, S. H.; Kim, U.J. Kor. Phys. Soc. 1997, 31, 608.
9 Von Gutfeld, R. J.; Melcher, R. L. Appl. Phys. Letts.1977, 30, 257.   DOI
10 Rosencwaig A.; Gersho A. J. Appl. Phys. 1976, 47, 64.   DOI   ScienceOn
11 Sze., S. M. Semiconductor sensors; 1st ed; New York, 1994; p 536.
12 Touloukian, Y. S.; Powell, R. W.; Ho, C. Y.; Nicolasu, M.C. Thermal Diffusivity; IFI/Plenum: New York, 1973.
13 Lim, J. T.; Han, H. Y.; Park, S. H.; Kim, U.; Choi, J. G.J. Kor. Chem. Soc. 1997, 41, 329.
14 McClelland, J. F.; Kniseley, R. N.; Schmit, J. L. Proc.Symp. on Scanned Image Microscopy; Ash, E. A. Ed.;Academic Press: Orlando, FLA, p 353.
15 Rosencwaig, A.; Busse, G. Appl. Phys. Letts. 1980, 36,725.   DOI