• Title/Summary/Keyword: structural loads

검색결과 3,045건 처리시간 0.027초

등가정하중을 이용한 비선형 거동 트러스 구조물의 최적설계 (Structural Optimization of Truss with Non-Linear Response Using Equivalent Static Loads)

  • 박기종;박경진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.999-1004
    • /
    • 2004
  • A numerical method and algorithms is proposed to perform optimization of non-linear response structures. An analytical and numerical method based finite element method is also proposed for the transformation of non-linear response into linear response. Loads transformed from this method are defined as the equivalent linear loads. With the loads and the transformed response, linear static optimization is performed for nonlinear response structure with geometric and/or material non-linearity. The results of the optimization are compared with them of typical non-linear response optimization using finite difference method. The proposed method is very efficient and derives good solution.

  • PDF

Analysis of structural dynamic reliability based on the probability density evolution method

  • Fang, Yongfeng;Chen, Jianjun;Tee, Kong Fah
    • Structural Engineering and Mechanics
    • /
    • 제45권2호
    • /
    • pp.201-209
    • /
    • 2013
  • A new dynamic reliability analysis of structure under repeated random loads is proposed in this paper. The proposed method is developed based on the idea that the probability density of several times random loads can be derived from the probability density of single-time random load. The reliability prediction models of structure based on time responses under several times random loads with and without strength degradation are obtained by using the stress-strength interference theory and probability density evolution method. The resulting differential equations in the prediction models can be solved by using the forward finite difference method. Then, the probability density functions of strength redundancy of the structures can be obtained. Finally, the structural dynamic reliability can be calculated using integral method. The efficiency of the proposed method is demonstrated numerically through a speed reducer. The results have shown that the proposed method is practicable, feasible and gives reasonably accurate prediction.

풍하중에 대한 구조진동의 예측제어 (Predictive Control of Structural Vibration Subject to Wind Loads)

  • 최창근;권대건;이은진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.29-36
    • /
    • 1996
  • A procedure for the predictive control for structural vibration control in building subject to wind loads is presented. The building motions are modeled by the first mode of the response. Wind velocities are generated by the simulation using power spectral density function. Predictive control algorithm is the discrete-time formulation and that is developed as a control strategy that computes the control signal which makes the predicted process output equal to a desired process output. Results on the reduction of the dynamic response and control effectiveness of the algorithm are presented and discussed.

  • PDF

Load-carrying capacities and failure modes of scaffold-shoring systems, Part I: Modeling and experiments

  • Huang, Y.L.;Chen, H.J.;Rosowsky, D.V.;Kao, Y.G.
    • Structural Engineering and Mechanics
    • /
    • 제10권1호
    • /
    • pp.53-66
    • /
    • 2000
  • This paper proposes a simple numerical model for use in a finite analysis (FEA) of scaffold-shoring systems. The structural model consists of a single set of multiple-story scaffolds with constraints in the out-of-plane direction at every connection joint between stories. Although this model has only two dimensions (termed the 2-D model), it is derived from the analysis of a complete scaffold-shoring system and represents the structural behavior of a complete three-dimensional system. Experimental testing of scaffolds up to three stories in height conducted in the laboratory, along with an outdoor test of a five-story scaffold system, were used to validate the 2-D model. Both failure modes and critical loads were compared. In the comparison of failure modes, the computational results agree very well with the test results. However, in the comparison of critical loads, computational results were consistently somewhat greater than test results. The decreasing trends of critical loads with number of stories in both the test and simulation results were similar. After investigations to explain the differences between the computationally and experimentally determined critical loads, it was recommended that the 2-D model be used as the numerical model in subsequent analysis. In addition, the computational critical loads were calibrated and revised in accordance with the experimental critical loads, and the revised critical loads were then used as load-carrying capacities for scaffold-shoring systems for any number of stories. Finally, a simple procedure is suggested for determining load-carrying capacities of scaffold-shoring systems of heights other than those considered in this study.

아웃리거의 중력하중 조절 효과 분석을 위한 사례연구 (Case Studies for Anlayzing Effects of Outriggers on Gravity Load Managements)

  • 강수민;엄태성;김재요
    • 한국전산구조공학회논문집
    • /
    • 제23권3호
    • /
    • pp.255-266
    • /
    • 2010
  • 초고층 건물에서 아웃리거를 이용한 횡력저항시스템이 자주 사용되고 있다. 아웃리거가 외부 기둥과 내부 코어를 연결함으로써 외부 기둥이 횡력저항시스템에 참여할 수 있어 구조적 저항능력이 향상될 수 있다. 그러나 아웃리거는 횡력 뿐만 아니라 중력하중의 조절에도 기여할 수 있다. 하중을 메가 기둥으로 전이시키거나 기둥, 벽체, 파일 등의 연직 부재들 간에 중력하중을 균등하게 분포시키며, 기초 시스템에서의 부등침하를 최소화하기 위하여 중력하중의 흐름이 아웃리거 부재에 의하여 변경될 수 있다. 본 연구에서는 100층 이상의 초고층 사례들에 대한 전산구조해석을 통하여 중력하중 조절에 대한 아웃리거의 효과를 분석한다. 아웃리거 유무에 따른 3차원 모델의 구조해석이 수행되며, 기둥과 파일에서의 중력하중 분포 및 기초 침하가 분석된다. 또한, 완공 단계 뿐만 아니라 시공 단계에서의 중력하중 조절에 대한 아웃리거의 효과도 분석된다.

Low-cycle fatigue evaluation for girth-welded pipes based on the structural strain method considering cyclic material behavior

  • Lee, Jin-Ho;Dong, Pingsha;Kim, Myung-Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.868-880
    • /
    • 2020
  • One of the main concerns in the structural integrity of offshore pipelines is mechanical damage from external loads. Pipelines are exposed to fatigue failure in welded joints due to geometric discontinuity. In addition, fatigue loads such as currents, waves, and platform motions may cause significant plastic deformation and fracture or leakage within a relatively low-cycle regime. The 2007 ASME Div. 2 Code adopts the master S―N curve for the fatigue evaluation of welded joints based on the mesh-insensitive structural stress. An extension to the master S―N curve was introduced to evaluate the low-cycle fatigue strength. This structural strain method uses the tensile properties of the material. However, the monotonic tensile properties have limitations in describing the material behavior above the elastic range because most engineering materials exhibit hardening or softening behavior under cyclic loads. The goal of this study is to extend the cyclic stress-strain behavior to the structural strain method. To this end, structural strain-based procedure was established while considering the cyclic stress-strain behavior and compared to the structural strain method with monotonic tensile properties. Finally, the improved prediction method was validated using fatigue test data from full-scale girth-welded pipes.

바닥판 진동해석을 위한 보행하중의 모형화 (Modeling of Walking Loads for Floor Vibration Analysis)

  • 김기철;최균호;이동근
    • 한국전산구조공학회논문집
    • /
    • 제15권1호
    • /
    • pp.173-188
    • /
    • 2002
  • 보행하중을 받는 바닥판 구조물의 진동해석을 위해서 일반적으로 계측한 보행하중을 적용하거나 Bachmann의 보행하중식을 사용하게 된다. 다양한 매개변수의 영향을 받는 보행하중은 계측이 쉽지 않으며 Bachmann 보행하중식은 보행진동수가 2.OHz와 2.4Hz로 제한적이기 때문에 다양한 보행진동수에 따른 보행하중을 적용하기가 곤란하다. 따라서 보행하중을 받는 구조물의 진동해석을 위해서 보행하중의 매개변수 분석과 다양한 보행진동수에 적용이 가능한 보행하중의 모형화가 필요하다. 본 논문에서는 로드셀이 장착된 계측 플레이트를 이용하여 바닥판에 가해지는 보행하중을 직접 계측하고 매개변수를 분석하였다. 그리고 퓨리에 변환을 이용하여 계측한 보행하중을 다양한 진동수를 가지는 조화하중으로 분해하였다. 분해과정을 거쳐 얻은 조화하중의 계수들을 보행진동수에 대한 일정한 함수관계로 유도하여 보행하중을 모형화하였다. 본 논문에서 제안한 보행하중식을 이용하면 다양한 보행진동수에 따라 다르게 나타나는 보행하중을 구조물의 진동해석에 용이하게 적용할 수 있다.

일정체적을 갖는 단순지지 보-기둥의 자유진동 및 좌굴하중 (Free Vibrations and Buckling Loads of Simple Beam-Columns with Constant Volumes)

  • 이병구;오상진;모정만;이용
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.62-69
    • /
    • 1995
  • The differential equations governing both the free vibrations and buckling loads of the beam-columns with constant volumes are derived and solved numerically. The axial load effects are included in the differential equations. The Runge-Kutta method and Regula-Falsi method are used to compute the eigenvalues corresponding to the natural frequencies. and buckling loads. In numerical examples, the simple end constraint is considered.

  • PDF

Experimental studies into a new type of hybrid outrigger system with metal dampers

  • Wang, A.J.
    • Structural Engineering and Mechanics
    • /
    • 제64권2호
    • /
    • pp.183-194
    • /
    • 2017
  • This paper presents the experimental investigation into a new type of steel-concrete hybrid outrigger system developed for the high-rise building structure. The steel truss is embedded into the reinforced concrete outrigger wall, and both the steel truss and concrete outrigger wall work compositely to enhance the overall structural performance of the tower structures under extreme loads. Meanwhile, metal dampers of low-yield steel material were also adopted as a 'fuse' device between the hybrid outrigger and the column. The damper is engineered to be 'scarified' and yielded first under moderate to severe earthquakes in order to protect the structural integrity of important structural components of the hybrid outrigger system. As such, not brittle failure is likely to happen due to the severe cracking in the concrete outrigger wall. A comprehensive experimental research program was conducted into the structural performance of this new type of hybrid outrigger system. Studies on both the key component and overall system tests were conducted, which reveal the detailed structural response under various levels of applied static and cyclic loads. It was demonstrated that both the steel bracing and concrete outrigger wall are able to work compositely with the low-yield steel damper and exhibits both good load carrying capacities and energy dispersing performance through the test program. It has the potential to be applied and enhance the overall structural performance of the high-rise structures over 300 m under extreme levels of loads.