• Title/Summary/Keyword: structural lightweight concrete

Search Result 181, Processing Time 0.026 seconds

Development of a Lightweight Rail Fastener Clip Shoulder (레일체결장치용 경량화숄더(코일스프링클립걸이)개발)

  • 양재성;백광일;남보현
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.487-494
    • /
    • 2000
  • For the rail fastener clip shoulder being used in Pandrol e-cilp type fastening system, there has been a need to make a structural and electrical improvement due to the fact that PC concrete sleeper showed material loss in the vicinity of exposed portion of the clip shoulder and the fact that track signal was lost when a track insulation block is missing on the track. In the present study, a new lightweight rail fastener clip shoulder with enhanced electrical insulation capability is developed

  • PDF

Behaviour of volcanic pumice based thin walled composite filled columns under eccentric loading

  • Anwar Hossain, Khandaker M.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.1
    • /
    • pp.63-81
    • /
    • 2003
  • This paper describes experimental and theoretical investigations on the behaviour of thin walled composite (TWC) filled columns under eccentric loading conditions. Details of the experimental investigation including description of the test columns, testing arrangements, failure modes, strain characteristics, load-deformation responses and effects of various geometric and material parameters are presented. The current paper also introduces the use and effect of lightweight Volcanic Pumice Concrete (VPC) in TWC columns. Analytical models for the design of columns under eccentric loading conditions have been developed taking into consideration the effect of confined concrete. The performance of design equations is validated through experimental results. The proposed design models are found to produce better results compared with available design procedures and Code based formulations. A computer program is developed to generate the interaction diagrams based on the proposed design equations that can be used for design purposes.

Study on the Thermal Characteristics of Concrete Using Insulation Performance Improve Material (단열성능향상 재료를 사용한 콘크리트의 열적 특성에 관한 연구)

  • Park, Young-Shin;Kim, Jung-Ho;Kang, Yeun-Woo;Youm, Kwang-Soo;Jeon, Hyun-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.227-228
    • /
    • 2013
  • Recently, it is certain that the increase of heating and cooling energy consumption by radical change in climate condition has caused serious problems related to environmental and energy concerns associated with increase of fossil fuel usage and carbon dioxide production as well as global warming. So, various actions to reduce greenhouse gas exhaustion and energy consumption have been prepared by world developed countries. The energy consumption by buildings approximately reaches 25% of total korea energy consumption. The greatest part in the buildings of the energy consumption is building facade. but a few research projects on concrete comprising more than 70% of outsider of buildings has been tried. This research structural insulation concrete what improved insulation performance using insulation performance improve material.

  • PDF

A Study on Monolithic Expression Characteristics of Concrete Buildings With focus on insulated lightweight aggregate concrete (콘크리트 건축물의 모놀리스적 표현특성에 관한 연구 단열경량골재콘크리트를 중심으로)

  • Won, Kyoung-Sop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.363-373
    • /
    • 2018
  • In today's diversified society, it is hard to know which building style represents the architectural style of the time. The simplicity found in monolithic-style buildings forms a symmetrical point with fairly complex structure, and its value can be acknowledged. This study analyzes buildings made of insulating lightweight aggregate concrete in the early 21st century, defines the concept of monolithic expression, and examines how these characteristics are expressed in the space, forms, and structural methods in construction. Unlike a multi-layered exterior wall system, which features multiple layers composed of a variety of materials, the exterior walls built with insulating lightweight aggregate concrete comes in a lump form with a mold form that is tightly filled with concrete as a single material and is monolithic. This is attributed to the creation of spaces characterized by the homogeneity of inner and outer spaces with the use of the same material, continuity of the surface as solidity, spatial characteristics of the stereotomic construction, expression of materiality with the use of exposed concrete, and the contrast of the lump and the space. This not only reveals formal characteristics that expose a discourse about monolithic architecture in contemporary architecture but also provide an opportunity to extend the range of discussion to structures and materials and even to their effects on space.

Behaviours of steel-fibre-reinforced ULCC slabs subject to concentrated loading

  • Wang, Jun-Yan;Gao, Xiao-Long;Yan, Jia-Bao
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.407-416
    • /
    • 2019
  • Novel steel fibre reinforced ultra-lightweight cement composite (ULCC) with compressive strength of 87.3MPa and density of $1649kg/m^3$ was developed for the flat slabs in civil buildings. This paper investigated structural behaviours of ULCC flat slabs according to a 4-specimen test program under concentrated loading and some reported test results. The investigated governing parameters on the structural behaviours of the ULCC slabs include volume fraction of the steel fibre and the patch loading area. The test results revealed that ULCC flat slabs with and without flexure reinforcement failed in different failure mode, and an increase in volume fraction of the steel fibre and loading area led to an increase in flexural resistance for the ULCC slabs without flexural reinforcement. Based on the experiment results, the analytical models were developed and also validated. The validations showed that the analytical models developed in this paper could predict the ultimate strength of the ULCC flat slabs with and without flexure reinforcement reasonably well.

Experimental Study on the Improvement of Workability of Cementitious Composites Using Nano-bubble Water (나노버블수를 활용한 시멘트 복합체의 작업성 증진에 대한 실험적 연구)

  • Lee, Nankyoung;Kang, Sung-Hoon;Moon, Juhyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.27-32
    • /
    • 2021
  • This study was conducted to improve the workability of cementitious composites using nano-bubble water. The used nano-bubble water contains 7% of nano-sized bubbles with an averaged bubble size of 750 nm. Various different types of cementitious composites including ultar-high performance concrete, lightweight cementitious composites, and high-strength mortar have been tested to identify the changes of material properties. From the use of nano-bubble water, it was confirmed that workability has been improved by 3-22%. On the other hand, other material characteristics such as compressive strength did not have noticeable changes. Therefore, it was proposed that the use of nano-bubble water can enhance workability of cementitious composites without having significant impact on other material properties.

Vibration analysis and FE model updating of lightweight steel floors in full-scale prefabricated building

  • Petrovic-Kotur, Smiljana P.;Pavic, Aleksandar P.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.277-300
    • /
    • 2016
  • Cold-formed steel (CFS) sections are becoming an increasingly popular solution for constructing floors in residential, healthcare and education buildings. Their reduced weight, however, makes them prone to excessive vibrations, increasing the need for accurate prediction of CFS floor modal properties. By combining experimental modal analysis of a full-scale CFS framed building and its floors and their numerical finite element (FE) modelling this paper demonstrates that the existing methods (based on the best engineering judgement) for predicting CFS floor modal properties are unreliable. They can yield over 40% difference between the predicted and measured natural frequencies for important modes of vibration. This is because the methods were adopted from other floor types (e.g., timber or standard steel-concrete composite floors) and do not take into account specific features of CFS floors. Using the adjusted and then updated FE model, featuring semi-rigid connections led to markedly improved results. The first four measured and calculated CFS floor natural frequencies matched exactly and all relevant modal assurance criterion (MAC) values were above 90%. The introduction of flexible supports and more realistic modelling of the floor boundary conditions, as well as non-structural $fa{\c{c}}ade$ walls, proved to be crucial in the development of the new more successful modelling strategy. The process used to develop 10 identified and experimentally verified FE modelling parameters is based on published information and parameter adjustment resulting from FE model updating. This can be utilised for future design of similar lightweight steel floors in prefabricated buildings when checking their vibration serviceability, likely to be their governing design criterion.

Mechanical model for seismic response assessment of lightly reinforced concrete walls

  • Brunesi, E.;Nascimbene, R.;Pavese, A.
    • Earthquakes and Structures
    • /
    • v.11 no.3
    • /
    • pp.461-481
    • /
    • 2016
  • The research described in this paper investigates the seismic behaviour of lightly reinforced concrete (RC) bearing sandwich panels, heavily conditioned by shear deformation. A numerical model has been prepared, within an open source finite element (FE) platform, to simulate the experimental response of this emerging structural system, whose squat-type geometry affects performance and failure mode. Calibration of this equivalent mechanical model, consisting of a group of regularly spaced vertical elements in combination with a layer of nonlinear springs, which represent the cyclic behaviour of concrete and steel, has been conducted by means of a series of pseudo-static cyclic tests performed on single full-scale prototypes with or without openings. Both cantilevered and fixed-end shear walls have been analyzed. After validation, this numerical procedure, including cyclic-related mechanisms, such as buckling and subsequent slippage of reinforcing re-bars, as well as concrete crushing at the base of the wall, has been used to assess the capacity of two- and three-dimensional low- to mid-rise box-type buildings and, hence, to estimate their strength reduction factors, on the basis of conventional pushover analyses.

Shear Performance Evaluation of Cast-in Specialty Inserts in Cracked Concrete according to Cyclic Loading Patterns (반복하중 패턴에 따른 균열 콘크리트에 매입된 선설치 인서트 앵커의 전단성능 평가)

  • Jeong, Sang-Deock;Oh, Chang-Soo;Lee, Chang-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.2
    • /
    • pp.53-60
    • /
    • 2023
  • Recently, a novel cast-in specialty insert was developed in Korea as an anchor for lightweight pipe supports, including fire-protection pipes. As these pipe supports and anchors play a critical role in transferring loads of fire-protection pipes to structural members, it is crucial to evaluate their seismic performance before applying the newly developed insert. In this study, the seismic shear performance of the insert anchors was evaluated through cyclic loading tests based on the loading protocols of ACI 355.2 and FEMA 461. Initially, five monotonic loading tests were conducted on the insert anchors in cracked concrete, followed by cyclic loading tests based on the monotonic test results. The findings revealed that the insert anchors exhibited negligible decrease in shear strength even after cyclic loading. Furthermore, a comparison of the maximum load and displacement of the insert anchors obtained under the loading protocols of ACI 355.2 and FEMA 461 was performed to investigate the applicability of the FEMA 461 loading protocol for anchor performance evaluation.

A Study on the Properties of the Concrete Containing Fly-ash of Class F According to the 3 Different Mixture Design (F급 플라이애쉬의 혼입방법을 달리한 콘크리트 특성에 관한 실험적 연구)

  • Moon, Jong-Wook;Yoo, Taek-Dong;Seo, Chee-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.191-198
    • /
    • 1999
  • The purpose of this study is investigating characteristics of the concrete containing Fly-ash according to different 4 mix design, that is, the first mix design is partial replace Fly-ash of cement, second is partial replace Fly-ash of cement and fine aggregate, third is partial replace Fly-ash of fine aggregate, fourth partial replacement of fine and coarse aggregate. For this purpose, selected test variables were water-binder ratio with two levels of 45%, 50%, and Fly-ash contents with four levels 0%, 10%, 20%, 30%, As the result of this study are as follow. 1) The result of mix design of a partial replacement of cement, the slump-flow value was appeared a promotive effect of viscosity. But in case of the over with Fly-ash 10% and the other mix design was not changed slump value. 2) The unit weight of the mixing rate with Fly-ash 0% was $1.875{\sim}1.884t/m^3$, the other mix design 10% over with Fly-ash was $1.846{\sim}1.615t/m^3$, the difference was appeared less about 15% than that. 3) In design, partial replace Fly-ash of fine aggregate, this compressive strength was appeared that the concrete age after 7 days was higher than in partial replacement of cement, therefore, the default of a concrete with Fly-ash, that is the earlier compressive strength was to lessen, was improved. 4) The thermal conductivity of the all mix design was $0.447{\sim}1.144kcal/mh^{\circ}C$, this value was as good as a lightweight aggregate concrete.

  • PDF