• 제목/요약/키워드: structural irregularities

검색결과 80건 처리시간 0.021초

Effect of sequential earthquakes on evaluation of non-linear response of 3D RC MRFs

  • Oggu, Praveen;Gopikrishna, K.
    • Earthquakes and Structures
    • /
    • 제20권3호
    • /
    • pp.279-293
    • /
    • 2021
  • Most of the existing seismic codes for RC buildings consider only a scenario earthquake for analysis, often characterized by the response spectrum at the specified location. However, any real earthquake event often involves occurrences of multiple earthquakes within a few hours or days, possessing similar or even higher energy than the first earthquake. This critically impairs the rehabilitation measures thereby resulting in the accumulation of structural damages for subsequent earthquakes after the first earthquake. Also, the existing seismic provisions account for the non-linear response of an RC building frame implicitly by specifying a constant response modification factor (R) in a linear elastic design. However, the 'R' specified does not address the changes in structural configurations of RC moment-resisting frames (RC MRFs) viz., building height, number of bays present, bay width, irregularities arising out of mass and stiffness changes, etc. resulting in changed dynamic characteristics of the structural system. Hence, there is an imperative need to assess the seismic performance under sequential earthquake ground motions, considering the adequacy of code-specified 'R' in the representation of dynamic characteristics of RC buildings. Therefore, the present research is focused on the evaluation of the non-linear response of medium-rise 3D RC MRFs with and without vertical irregularities under bi-directional sequential earthquake ground motions using non-linear dynamic analysis. It is evident from the results that collapse probability increases, and 'R' reduces significantly for various RC MRFs subjected to sequential earthquakes, pronouncing the vulnerability and inadequacy of estimation of design base shear by code-specified 'R' under sequential earthquakes.

Fundamental period of infilled RC frame structures with vertical irregularity

  • Asteris, Panagiotis G.;Repapis, Constantinos C.;Foskolos, Filippos;Fotos, Alkis;Tsaris, Athanasios K.
    • Structural Engineering and Mechanics
    • /
    • 제61권5호
    • /
    • pp.663-674
    • /
    • 2017
  • The determination of the fundamental period of vibration of a structure is essential to earthquake design. Current codes provide formulas for the approximate estimation of the fundamental period of earthquake-resistant building systems. These formulas are dependent only on the height of the structure or number of storeys without taking into account the presence of infill walls into the structure, despite the fact that infill walls increase the stiffness and mass of the structure leading to significant changes in the fundamental period. Furthermore, such a formulation is overly conservative and unable to account for structures with geometric irregularities. In this study, which comprises the companion paper of previous published research by the authors, the effect of the vertical geometric irregularities on the fundamental periods of masonry infilled structures has been investigated, through a large set of infilled frame structure cases. Based on these results, an attempt to quantify the reduction of the fundamental period due to the vertical geometric irregularities has been made through a proposal of properly reduction factor.

Collapse response assessment of low-rise buildings with irregularities in plan

  • Manie, Salar;Moghadam, Abdoreza S.;Ghafory-Ashtiany, Mohsen
    • Earthquakes and Structures
    • /
    • 제9권1호
    • /
    • pp.49-71
    • /
    • 2015
  • The present paper aims at evaluating damage and collapse behavior of low-rise buildings with unidirectional mass irregularities in plan (torsional buildings). In previous earthquake events, such buildings have been exposed to extensive damages and even total collapse in some cases. To investigate the performance and collapse behavior of such buildings from probabilistic points of view, three-dimensional three and six-story reinforced concrete models with unidirectional mass eccentricities ranging from 0% to 30% and designed with modern seismic design code provisions specific to intermediate ductility class were subjected to nonlinear static as well as extensive nonlinear incremental dynamic analysis (IDA) under a set of far-field real ground motions containing 21 two-component records. Performance of each model was then examined by means of calculating conventional seismic design parameters including the response reduction (R), structural overstrength (${\Omega}$) and structural ductility (${\mu}$) factors, calculation of probability distribution of maximum inter-story drift responses in two orthogonal directions and calculation collapse margin ratio (CMR) as an indicator of performance. Results demonstrate that substantial differences exist between the behavior of regular and irregular buildings in terms of lateral load capacity and collapse margin ratio. Also, results indicate that current seismic design parameters could be non-conservative for buildings with high levels of plan eccentricity and such structures do not meet the target "life safety" performance level based on safety margin against collapse. The adverse effects of plan irregularity on collapse safety of structures are more pronounced as the number of stories increases.

Random vibration analysis of train-slab track-bridge coupling system under earthquakes

  • Zeng, Zhi-Ping;He, Xian-Feng;Zhao, Yan-Gang;Yu, Zhi-Wu;Chen, Ling-Kun;Xu, Wen-Tao;Lou, Ping
    • Structural Engineering and Mechanics
    • /
    • 제54권5호
    • /
    • pp.1017-1044
    • /
    • 2015
  • This study aimed to investigate the random vibration characteristic of train-slab track-bridge interaction system subjected to both track irregularities and earthquakes by use of pseudo-excitation method (PEM). Each vehicle subsystem was modeled by multibody dynamics. A three-dimensional rail-slab- girder-pier finite element model was created to simulate slab track and bridge subsystem. The equations of motion for the entire system were established based on the constraint condition of no jump between wheel and rail. The random load vectors of equations of motion were formulated by transforming track irregularities and seismic accelerations into a series of deterministic pseudo-excitations according to their respective power spectral density (PSD) functions by means of PEM. The time-dependent PSDs of random vibration responses of the system were obtained by step-by-step integration method, and the corresponding extreme values were estimated based on the first-passage failure criterion. As a case study, an ICE3 high-speed train passing a fifteen-span simply supported girder bridge simultaneously excited by track irregularities and earthquakes is presented. The evaluated extreme values and the PSD characteristic of the random vibration responses of bridge and train are analyzed, and the influences of train speed and track irregularities (without earthquakes) on the random vibration characteristic of bridge and train are discussed.

수직비정형과 비틀림비정형을 동시에 가지는 저층 RC 건물의 내진성능에 관한 연구 (Study on the Seismic Performance for Low-rised RC Building with Vertical and Torsional Irregularities)

  • 최인혁;백은림;이상호
    • 대한건축학회논문집:구조계
    • /
    • 제35권12호
    • /
    • pp.137-148
    • /
    • 2019
  • Korean piloti-type buildings are comprised of pilotis in the first story and shear walls in the upper stories. This vertical irregularity causes excessive lateral plastic deformation on the first story while the upper stories stay elastic. Meanwhile, asymmetric position of structural components such as core walls and columns of RC piloti-type buildings tends to produce torsional irregularities of the structures. Korean Building Code(KBC2016) requires the special seismic load and torsional amplification factor to apply to the piloti-type buildings lower than six-story or 20m if it has vertical and torsional irregularities when the building corresponds to seismic design category C or D. Many Korean low-rised RC buildings fall into the class. Therefore, the special earthquake load and torsional amplification factor are often applied to a building simultaneously. However, it has not been studied enough how much influence each parameter has on buildings with vertical and torsional irregularities at the same time. The purpose of this study is to evaluate the effect of factor special seismic load and torsional amplification on seismic performance of irregular buildings. In this study, a damaged 4th story piloti-type building by the Pohang earthquake was selected and the earthquake response analysis was carried out with various seismic design methods by the KBC 2016. The effect of the design parameters on seismic performance was analyzed by the dynamic analysis of models with special seismic load and torsional amplification factor based on the selected building. It was concluded that the application of the torsional amplification factor to the reference model to which special seismic design was applied, does not significantly affect the seismic performance.

Desired earthquake rail irregularity considering random pier height and random span number

  • Jian Yu;Lizhong Jiang;Wangbao Zhou
    • Structural Engineering and Mechanics
    • /
    • 제90권1호
    • /
    • pp.41-49
    • /
    • 2024
  • In recent years, China's high-speed railway (HSR) line continues to expand into seismically active regions. Analyzing the features of earthquake rail irregularity is crucial in this situation. This study first established and experimentally validated a finite element (FE) model of bridge-track. The FE model was then combined with earthquake record database to generate the earthquake rail irregularity library. The sample library was used to construct a model of desired earthquake rail irregularity based on signal processing (SFT) and hypothesis principle. Finally, the effects of random pier height and random span number on desired irregularity were analyzed. Herein, an equivalent method of calculating earthquake rail irregularities for random structures was proposed. The results of this study show that the amplitude of desired irregularity is found to increase with increasing pier height. When calculating the desired irregularity of a structure with unequal pier heights, the structure can be regarded as that with equal pier heights (taking the largest pier height). For a structure with the span number large than 9, its desired irregularity can be considered equal to that of a 9-span structure. For the structures with both random pier heights and random span number, their desired irregularities are obtained by equivalent calculations for pier height and span number, respectively.

Evaluation of Seismic performance of RC setback frames

  • Habibi, Alireza;Vahed, Meisam;Asadi, Keyvan
    • Structural Engineering and Mechanics
    • /
    • 제66권5호
    • /
    • pp.609-619
    • /
    • 2018
  • When the irregularities occurred in buildings, affect their seismic performance. This paper has focused on one of the types of irregularities at the height that named setback in elevation. For this purpose, several multistorey Reinforced Concrete Moment Resisting Frames (RCMRFs) with different types of setbacks were designed according to new edition of Iranian seismic code. The nonlinear time history analysis was performed to predict the seismic performance of frames subjected to seven input ground motions. The assessment of the seismic performance was done considering both global and local criteria. Results showed that the current edition of Iranian seismic code needs to be modified in order to improve the seismic behaviour of reinforced concrete moment resisting setback buildings. It was also shown that the maximum damages happen at the elements located in the vicinity of the setbacks. Therefore, it is necessary to strengthen these elements by appropriate modification of Iranian seismic code.

배전케이블용 XLPE의 특성 비교 (Comparison of Characteristics of XLPE for Distribution Power Cables)

  • 서광석;김종은;이건주;김영호;정진수
    • 한국전기전자재료학회논문지
    • /
    • 제11권9호
    • /
    • pp.671-682
    • /
    • 1998
  • Chemical structure and electrical characteristics of 5 commercial crosslinked polyethylenes (XLPE) used as insulating materials for medium voltage distribution power cables in Korea were investigated. It was found that each XLPE shows different properties depending on the type of XLPE. Chemical structural irregularities of pellets change considerably by crossliking reaction, with some irregularities being disappeared after crosslikeng reaction. It was also found through a solvent extraction study that additives such as crosslinking agent and antioxidants act as major source retarding water tree growth. Low molecular weight polyethylene chains plays a different role in water tree growth of XLPE.

  • PDF

Effect of rapid screening parameters on seismic performance of RC buildings

  • Ozmen, Hayri B.;Inel, Mehmet
    • Structural Engineering and Mechanics
    • /
    • 제62권4호
    • /
    • pp.391-399
    • /
    • 2017
  • This study investigates the effects of soft story, short columns, heavy overhangs, pounding, and construction and workmanship quality parameters on seismic response of reinforced concrete buildings through nonlinear static and dynamic procedures. The accounted parameters are selected for their common use in rapid screening of RC buildings. The 4- and 7-story buildings designed according to pre-modern codes are used to reflect majority of the existing building stock. The relative penalty scores are employed in this study to evaluate relative importance of certain irregularities in the existing rapid seismic assessment procedures. Comparison of relative scores for the irregularities considered in this study show that the overall trend is similar. The relatively small differences may be accounted for regional construction practices. It is concluded that initial-phase seismic assessment procedures based on architectural features yield in somewhat similar results independent of their bases. However, the differences in the scores emphasize the proper selection of the method based on the regional structure characteristics.

강성기반 연층비를 활용한 주거형 필로티 건축물의 내진성능예비평가 기법 개발 (Development of Preliminary Seismic Performance Evaluation Method for Residential Piloti Buildings Using Stiffness-Based Soft Story Ratios)

  • 최재혁;최인섭;김준희;손정훈
    • 한국전산구조공학회논문집
    • /
    • 제34권4호
    • /
    • pp.175-182
    • /
    • 2021
  • 연층을 가지는 건축물들의 피해사례가 관측됨에 따라 기존 건축물 내진성능평가시 수직비정형의 고려가 중요해졌다. 하지만 기존 방법은 수직비정형을 충분히 반영하기 어렵기 때문에 수직비정형을 가지는 건축물에 대해 내진성능을 과소 혹은 과대평가할 여지가 있다. 본 연구는 강성기반 연층비(Soft Story Ratio, SSR)를 이용해 수직비정형 건축물의 내진성능평가 기법을 개발하는데 목적이 있다. SSR은 변위에 대한 요구량과 능력의 비율을 나타내고, 강성차이에 의한 수직비정형을 고려하여 건축물의 변위집중 비율을 의미하는 파라미터다. 1층 기둥을 변수로 하는 필로티 건축물 네 개를 대상으로 개발한 내진성능평가 기법을 기존의 내진성능평가 기법과 비교하였다. 기존 기법은 수직비정형이 극대화되는 모델에 대해 내진성능을 과대평가하는 경우가 발생하였다. 반면 제안된 기법은 모든 모델에 대해서 상세평가의 결과와 동일했다. 따라서 제안하는 내진성능평가 기법은 수직비정형이 극대화되는 필로티 건축물에서 기존의 방법보다 정밀하게 내진성능평가 결과를 제공할 수 있다고 사료된다.