• Title/Summary/Keyword: structural inertia

Search Result 313, Processing Time 0.03 seconds

Bridge Safety Evaluation Based on the System Identification (구조동정법(構造同定法)에 의한 교량(橋梁)의 안전성(安全性) 평가(評價))

  • Kim, Kee-Dae;Lee, Sang-Wha
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.2
    • /
    • pp.162-169
    • /
    • 1998
  • This paper presents the application of system identification approaches for the safety assessment of RC-T type bridge based on the result of field test. For these problems, the moment of inertia of cross-sectional area and the natural frequency of bridge were used as structural parameters, the SAP90 program for the structural analysis and the SLP method for the minimum error. As a result, it is found that the proposed algorithm for this study appears applicable to real structures with reasonable complexity. It is shown that the introduction of approximate quadratic equations is more realistic and timesaving than the common methods.

  • PDF

Influence of fracture characters on flow distribution under different Reynold numbers

  • Wang, Jing;Li, Shu-Cai;Li, Li-Ping;Gao, Cheng-Lu
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.187-193
    • /
    • 2018
  • Water inrush through the destruction of water resisting rock mass structure was divided into direct water inrush, key block water inrush and splitting water inrush. In the direct water inrush, the Reynolds numbers has a significant effect on the distribution of the water flow and vortex occurred in the large Reynolds numbers. The permeability coefficient of the fracture is much larger than the rock, and the difference is between 104 and 107 times. The traditional theory and methods are not considering the effect of inertia force. In the position of the cross fracture, the distribution of water flow can only be linearly distributed according to the fracture opening degree. With the increase of Reynolds number, the relationship between water flow distribution and fracture opening is studied by Semtex.

Development of Drift Design Method of High-rise buildings considering Material Properties of Shear Walls and Design Variable Linking Strategy (RC 전단벽의 재료 물성과 부재 그룹핑을 고려한 고층건물 변위조절설계법 개발)

  • 서지현;박효선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.487-494
    • /
    • 2004
  • Resizing techniques have been recognized as practical methods for drift design of high-rise building since sensitivity analysis and iterative structural analysis are not required in implementation. In the techniques, the amount of material of a memberin a building for resizing is determined in terms of cross-sectional areas and sectional inertia moments as design variables. In this study, five drift design methods are developed by considering design variable linking strategy and fomulating resizing algorithm in terms of material properties of shear walls as a design variable. The developed methods are applied to the drift design of 20-story frame-RC shear wall structure, and then evaluated in the view points of practicality and efficiency.

  • PDF

Development of Active Control System for Structural Vibration Using a Hydraulic Actuator (유압식 Actuator를 이용한 구조물 진동의 능동제어시스템 개발)

  • S.J. Moon;T.Y. Chung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.94-102
    • /
    • 1995
  • The active control system of structural vibration using a hydraulic actuator is developed. The developed system consists of three parts : a hydraulic unit, an actuator unit and a control unit. Structural vibration is sensored by the accelerometer attached to the structure and reduced by the optimally controlled motion of active mass giving anti-phase inertia force to the structure. It is experimentally confirmed that the vibration level of model structure is reduced to about 1/6 by the developed active control system.

  • PDF

A Study on the Structural Strength of the Rolling Stock Seat Frame (철도차량 시트프레임의 강도 평가 연구)

  • 구정서;조현직
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.130-138
    • /
    • 2004
  • In this paper, the structural strength of a rolling stock seat were numerically evaluated under several design load conditions based on the UIC requirements. The rot]ins stock seat was designed for the high speed train of a Chinese conventional line. To maximize its weight reduction and structural strength, an aluminium alloy, ALDC8-T5, was applied to the base frame, side frames and armrests. The designed seat frame satisfied the strength requirements on inertia loads and fatigue test conditions. However, it couldn't satisfy the requirements on the static test conditions of UIC 566 OR. Therefore, some design modifications were suggested and numerically evaluated whether the static test requirements could be satisfied or not.

MODEL FOR SUBWAY-INDUCED STRUCTURAL VIBRATION (지하철 진동이 구조물에 미치는 영향분석 모델)

  • 김희철;이동근;민경원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.199-204
    • /
    • 1993
  • Noise and vibration induced by subway operation are one of the major factor that annoying residents living near the. railway. In general, lateral vibration was the major concern when we are considering vibration of the building. Since the energy due to earthquake is enormous it affects wide area. However, the vertical vibration became a major concern in considering the vibration induced by subway because relatively smaller energy affects only nearby areas than that of earthquake. Analysis model of the structure for the vertical vibration should consider the effect of beam vibration. Thus, the model of the structure for the lateral vibration can not be applied. Appropriate analysis model which can consider the inertia force of the beam is necessary when analyzing a structure for the vertical vibration. Modeling technique for the vertical vibration analysis of structures has been studied on this paper. It is recommeneded to use 2 or more elements for columns and to use 3 or more elements for beams when analyzing structures for vertical vibration induced by subway.

  • PDF

Effective length factors for the framed columns with variable stiffness (골조구성 변단면 기둥의 유효길이 계수)

  • 이수곤;김순철;오금열
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.175-182
    • /
    • 2001
  • Effective length factor approach for framed column design has long played an important design-aid role. This approach, however, is effective only when the columns are in the form of prismatic or uniform cross sections. Structural engineers who have to design or analyse framed columns with variable cross sections need some means to do their job. By using the finite element method, the stability analysis of the isolated compression members with variable cross sections and that of the framed columns are performed. The parameters considered in the stability analysis are taper and sectional property parameters of the columns, the second moment of inertia ratio of beam to column, and beam span to column height ratio. On the basis of the stability analysis results, effective length factor formulas for the columns with variable sections are derived.

  • PDF

A Study on the Seismic Analysis of Continuous Preflex Composite Bridges (연속 프리플렉스 합성형교의 내진해석에 관한 연구)

  • 구민세;정재운;김훈희
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.241-248
    • /
    • 1999
  • Structural damage during an earthquake is caused by the response of the structure to the ground motion input at its base. The dynamic force produced in the structure are due to the inertia of its vibrating elements. The response of the structure exceeds the ground motion and this dynamic magnification depends on the duration and frequency content of the ground vibration, the soil properties at the site, distance from the epicenter and the dynamic characteristics of the structure. Earthquake load used in this study as a input data was artificially simulated with the design spectrum diagram in the Korean Earthquake Resistant Design Code. This paper presents the seismic analysis of the continuous preflex composite girder bridges according to variation of pier's height and span's length.

  • PDF

Support Deflection Effects in Slabs with Beam and Girder (보-거더 시스템 슬래브에서 지지부 처짐영향에 관한 연구)

  • 곽효경;송종영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.55-62
    • /
    • 1997
  • The support deflection effects in slabs with beams and girders are reviewed for both cases of the uniformly distributed and concentrated wheel loads. The differences in structural behavior according to the variation of support stiffness namely, the moment of inertia of beam and gilder, and the slab thickness, are calculated using the finite element method. Besides. the correction factors which can consider the support deflection effects in slab design are proposed by regression based on the obtained numerical results. Through the comparision studies of slabs with different boundary conditions, the importance for the consideration of support deflection effects in design are emphasized.

  • PDF

Parametric Study on Rail and Bridge Interaction (레일과 교량의 상호작용 매개변수 분석 연구)

  • Kim, Jong-Min;Han, Sang-Yun;Lim, Nam-Hyoung;Kim, Jung-Hun;Kang, Young-Jong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.445-450
    • /
    • 2007
  • CWR(Continuous Welded Rail) and bridge interaction produce rail force, bridge displacement and rail/bridge relative displacement. Each of these has limitation by many codes. In this paper, analysis of interaction has been carried out by using foreign codes(UIC 774-3 R code of Europe etc.) because there is no code about interaction between rail and bridge in Korea. Recently, railway bridges with CWR has been constructed for structural and economical reasons. When designer plans railway bridges, design a bridge model first and then investigate railway forces and displacement by interaction analysis. If these results go out bounds from limitation, designer plans railway bridges again and again. In this paper, using the parametric study on CWR and railway bridge interaction, railway bridge parameters such as length of bridge span, area of bridge, moment of inertia, stiffness of pier, etc. are presented. It helps preliminary design of railway bridges.

  • PDF