• Title/Summary/Keyword: structural holes

Search Result 232, Processing Time 0.028 seconds

KaVA Q-band Monitoring of Sgr A* in 2013-2014

  • Zhao, Guang-Yao;Akiyama, Kazunori;Kino, Motoki;Sohn, Bong Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.38.4-39
    • /
    • 2015
  • We have been monitoring Sgr A*, the radio source at the center of our galaxy, continuously since G2 encounter was predicted. KaVA is a powerful High resolution imaging array at K and Q band, and it has a excellent uv-coverage for Sgr A*. Together with 1-Gbps recording, our observations have provided high-quality images of Sgr A* at Q-band. Our images reveal a scatter-broadened, elliptical Gaussian structure of the source. We found no significant flux or structural variation of Sgr A* in 2013-2014, which is consistent with recent simulations by Kawashima et al. Continuous monitoring in the coming few years would be able to capture the possible flux increase in the source caused by G2, which will lead to better understanding of the accretion process around supermassive black holes.

  • PDF

Structural Safety Analysis on Crack Propagation in Compact Tension Specimen (소형 인장 시험편 내의 크랙 전파에 대한 구조 안전해석)

  • Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.5 no.1
    • /
    • pp.23-27
    • /
    • 2014
  • In case eccentric load is applied at compact tension specimen, the propagation behavior due to existence or nonexistence of hole, numbers and positions of holes near crack is investigated in this study. Strain energy, displacement and stress happened in specimen are examined through simulation analysis. And stress intensity factor is obtained by the basis of strain energy and deformation. When defect or hole exists in structure, the possibility of fracture can be thought to be verified by using the study result.

A Study on the Strength Evaluation of Micropile with Expanded Drill Hole (확공형 마이크로 파일의 강도 평가에 관한 연구)

  • Lee, Jae-Min;Kim, Doo-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.74-81
    • /
    • 2014
  • This study proposes an advanced type of a micropile system. The proposed micropile system consists of perfobond ribs installed steel rod to improve shear capacity between the thread and the grout, and partially expanded drill holes to increase resistance capacity between the grout and the ground. This study contains experimental evaluations on the proposed micropile system to verify the shear capacity of perfobond rib installed on the steel rod and the load-carrying capacity of shear key created by the partially expanded drill hole. Push-out tests were conducted on a rolled screw thread and steel rods which perfobond ribs are installed instead of rolled screw, in order to compare their load-carrying capacity and behavioral characteristics. As a result, it was confirmed that the perfobond-rib steel rods show much superior structural behavior in terms of initial stiffness, ultimate load, and ductile behavior.

A BEM implementation for 2D problems in plane orthotropic elasticity

  • Kadioglu, N.;Ataoglu, S.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.5
    • /
    • pp.591-615
    • /
    • 2007
  • An improvement is introduced to solve the plane problems of linear elasticity by reciprocal theorem for orthotropic materials. This method gives an integral equation with complex kernels which will be solved numerically. An artificial boundary is defined to eliminate the singularities and also an algorithm is introduced to calculate multi-valued complex functions which belonged to the kernels of the integral equation. The chosen sample problem is a plate, having a circular or elliptical hole, stretched by the forces parallel to one of the principal directions of the material. Results are compatible with the solutions given by Lekhnitskii for an infinite plane. Five different orthotropic materials are considered. Stress distributions have been calculated inside and on the boundary. There is no boundary layer effect. For comparison, some sample problems are also solved by finite element method and to check the accuracy of the presented method, two sample problems are also solved for infinite plate.

Computational Studies on the Performance of Flow Distributor in Tank (탱크 내부 유동 분사장치 성능에 대한 수치해석적 연구)

  • Shin, Soo Jai;Kim, Young In;Ryu, Seungyeob;Bae, Youngmin
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.115-122
    • /
    • 2014
  • The optimal design of the flow distributor is very important to ensure the structural integrity of the reactor system and their safe operation during some transient or accident conditions. In the present study, we numerically investigated the performance of a flow distributor in tank with different shape factors such as the total number of the holes, the pitch-to-hole diameter ratios (p/d), the diameter of the hole and the area ratios. These data will contribute to a design of the flow distributor.

Stress and Vibration Analysis with respect to the change of the Shape of Screw Blade and the Hole for Centrifuge (원심분리기용 스크류의 블레이드 및 원공형상변화에 따른 응력 및 진동해석)

  • 한근조;이성욱;심재준;한동섭;안찬우;서용권;김태형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.118-125
    • /
    • 2003
  • In this study, we carried out the finite element analysis for the screw of centrifuge that is the weakest part of the centrifuge for sewage management. Centrifugal force caused by rotation with velocity of 4000rpm was applied at the screw. Structural analysis was done with respect to the change of the ratio of blade pitch($R_P$), shaft diameter($R_D$) and extended hole($R_E$). When the area of circular hole is equal to that of extended holes, maximum equivalent stresses in the screw with circular and extended circular hole were compared. And then natural frequency analysis was executed for the same model. Three mode shapes were used to explain the vibration characteristics of each screw. Convergence study was accomplished fur more accurate results.

Polysilicon anti-sticking structure by grain etching technique (결정립 식각 기술을 이용한 다결정 실리콘 부착 방지 구조)

  • 이영주;박명규;전국진
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.2
    • /
    • pp.60-69
    • /
    • 1998
  • Polysilicon surface mdoification tecnique is developed to reduce the sticking of microstructures fabricated by micromachining. Modified anti-sticking grain holes are simply formed by two-step dry eth without additional photolithography nor deposition of thin films. Both process-induced sticking and in-use sticking are successfully reduced more than two times by adopting grain holed polysilicon substrate. A sticking model for cantilever beam is derived. This model includes bending moment stems from stress gradient along the thickness directionof structural polysilicon. Because the surface tension of rinse liquid and the surface energy of the solids to be stuk tend to decrease in recently developed anti-sticking techniques, the effect of stress gradient will play an important role to analyze the sticking phenomena. Effect of the temperature during post-release rinse and dry is modelled and verified experimentally. Based on developed anti-sticking polysilicon structure and the sticking model, sticking of microstructure, fabricated by simple wet process including sacrificial layer etch and rinse with deionized water without special equimpment for post-release rinse and dry was alleviated more than 3.5 times.

  • PDF

Structural Arrangements and Bonding Analysis of MgB2C2

  • Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2565-2570
    • /
    • 2010
  • The orthorhombic $MgB_2C_2$ structure contains well-separated parallel graphite-like $B_2C_2^{2-}$ layers which extend infinitely in two dimensions. Three possible ways to distribute B and C atoms in the hexagonal sublattice sites are adopted. Band structures for the hypothetical distribution patterns are examined to assess the electronic stability of these phases and to account for the observed arrangement by means of extended Huckel tight-binding calculations. The preferred choice is the layer with B and C alternating strictly so that B is nearest neighbor to C and vice versa. A rationale for this is given. Due to the alternation of B and C within the honeycomb layers, $MgB_2C_2$ is a band insulator, which through partial substitution of Mg with Li, is predicted to turn metallic with holes in the $\sigma$ bands at the Fermi level.

Spectroscopic Studies of TP6F PI Switched by Hole-Injection

  • Lee, Gyeong-Jae;Im, Gyu-Uk;Kim, Dong-Min;Lee, Mun-Ho;Gang, Tae-Hui;Jeong, Seok-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.297-298
    • /
    • 2011
  • Metal/poly (4,4'-aminotriphen-ylene hexafluoroisopropylidenediphthalimide) (TP6F PI)/metal structure exhibited an electrically volatile phase transition with high (OFF) or low (ON) resistive states when voltage between electrodes swept. Here, we demonstrate a noble set-up in which holes are injected by photoelectron emission process during the voltage sweep instead of direct charge carrier injection via metal electrode, which enables direct investigation into changed electronic structures of TP6F PI both in ON and OFF states using photoemission spectroscopy methods. In the I-V measurement, TP6F PI shows a non-volatile behavior. In spectroscopic results, this non-volatile behavior is leaded from the structural modification of the O=C double bond in phthalimide of TP6F PI by hole injection.

  • PDF

Effects of pore structures on electrochemical behaviors of polyacrylonitrile-based activated carbon nanofibers by carbon dioxide activation

  • Lee, Hye-Min;Kim, Hong-Gun;An, Kay-Hyeok;Kim, Byung-Joo
    • Carbon letters
    • /
    • v.15 no.1
    • /
    • pp.71-76
    • /
    • 2014
  • Activated carbon nanofibers (ACNF) were prepared from polyacrylonitrile (PAN)-based nanofibers using $CO_2$ activation methods with varying activation process times. The surface and structural characteristics of the ACNF were observed by scanning electron microscopy and X-ray diffraction, respectively. $N_2$ adsorption isotherm characteristics at 77 K were confirmed by Brunauer-Emmett-Teller and Dubinin-Radushkevich equations. As experimental results, many holes or cavernous structures were found on the fiber surfaces after the $CO_2$ activation as confirmed by scanning electron microscopy analysis. Specific surface areas and pore volumes of the prepared ACNFs were enhanced within a range of 10 to 30 min of activation times. Performance of the porous PAN-based nanofibers as an electrode for electrical double layer capacitors was evaluated in terms of the activation conditions.