Browse > Article
http://dx.doi.org/10.5012/bkcs.2010.31.9.2565

Structural Arrangements and Bonding Analysis of MgB2C2  

Kang, Dae-Bok (Department of Chemistry, Kyungsung University)
Publication Information
Abstract
The orthorhombic $MgB_2C_2$ structure contains well-separated parallel graphite-like $B_2C_2^{2-}$ layers which extend infinitely in two dimensions. Three possible ways to distribute B and C atoms in the hexagonal sublattice sites are adopted. Band structures for the hypothetical distribution patterns are examined to assess the electronic stability of these phases and to account for the observed arrangement by means of extended Huckel tight-binding calculations. The preferred choice is the layer with B and C alternating strictly so that B is nearest neighbor to C and vice versa. A rationale for this is given. Due to the alternation of B and C within the honeycomb layers, $MgB_2C_2$ is a band insulator, which through partial substitution of Mg with Li, is predicted to turn metallic with holes in the $\sigma$ bands at the Fermi level.
Keywords
Coloring problem; Electronic structure; Extended Huckel calculations; Ternary metal borocarbides;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Burdett, J. K.; Canadell, E.; Hughbanks, T. J. Am. Chem. Soc. 1986, 108, 3971.   DOI
2 An, J. M.; Pickett, W. E. Phys. Rev. Lett. 2001, 86, 4366.   DOI
3 Kortus, J.; Mazin, I. I.; Belashchenko, K. D.; Antropov, V. P.; Boyer, L. L. Phys. Rev. Lett. 2001, 86, 4656.   DOI
4 Mazin, I. I.; Antropov, V. P. Physica C 2003, 385, 49.   DOI
5 Albert, B.; Schmitt, K. Inorg. Chem. 1999, 38, 6159.   DOI
6 Pauling, L. The Nature of the Chemical Bond; Cornell University Press: Ithaca, New York, 1960.
7 Rocquefelte, X.; Boulfelfel, S. E.; Yahia, M. B.; Bauer, J.; Saillard, J.-Y.; Halet, J.-F. Angew. Chem. Int. Ed. 2005, 44, 7542.   DOI
8 Fang, C.-M.; Bauer, J.; Saillard, J.-Y.; Halet, J.-F. J. Solid State Chem. 2007, 180, 2465.   DOI
9 Ravindran, P.; Vajeeston, P.; Vidya, R.; Kjekshus, A.; Fjellvag, H. Phys. Rev. B 2001, 64, 224509.   DOI
10 Harima, H. Physica C 2002, 378-381, 18.   DOI
11 Hirsch, J. E. Phys. Lett. A 2001, 282, 392.   DOI
12 Spano, E.; Bernasconi, M.; Kopnin, E. Phys. Rev. B 2005, 72, 014530.   DOI
13 Nagamatsu, J.; Nakagawa, N.; Muronaka, T.; Zenitani, Y.; Akimitsu, J. Nature 2001, 410, 63.   DOI
14 Rosner, H.; Kitaigorodsky, A.; Picket, W. E. Phys. Rev. Lett. 2002, 88, 127001.   DOI
15 Worle, M.; Nesper, R. J. Alloys Compd. 1994, 216, 75.   DOI
16 Verma, A. K.; Modak, P.; Gaitonde, D. M.; Rao, R. S.; Godwal, B. K.; Gupta, L. C. Europhys. Lett. 2003, 63, 743.   DOI
17 Mori, T.; Takayama-Muromachi, E. Curr. Appl. Phys. 2004, 4, 276.   DOI
18 Burdett, J. K.; Lee, S.; McLarnan, T. J. J. Am. Chem. Soc. 1985, 107, 3083.   DOI