• Title/Summary/Keyword: structural hole

Search Result 390, Processing Time 0.022 seconds

Deformation of a rectangular plate with an arbitrarily located circular hole under in-plane pure shear loading

  • Yang, Yeong-Bin;Kang, Jae-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.60 no.2
    • /
    • pp.351-363
    • /
    • 2016
  • Exact solutions for stresses, strains, displacements, and the stress concentration factors of a rectangular plate perforated by an arbitrarily located circular hole subjected to in-plane pure shear loading are investigated by two-dimensional theory of elasticity using the Airy stress function. The hoop stresses, strains, and displacements occurring at the edge of the circular hole are computed and plotted. Comparisons are made for the hoop stresses and the stress concentration factors from the present study and those from a rectangular plate with a circular hole under uni-axial and bi-axial uniform tensions and in-plane pure bending moments on two opposite edges.

Analytical studies on stress concentration due to a rectangular small hole in thin plate under bending loads

  • Yang, Y.;Liu, J.K.;Cai, C.W.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.6
    • /
    • pp.669-678
    • /
    • 2010
  • In general means, the stress concentration problem of elastic plate with a rectangular hole can be investigated by numerical methods, and only approximative results are derived. This paper deduces an analytical study of the stress concentration due to a rectangular hole in an elastic plate under bending loads. Base on classical elasticity theory and FEM applying the U-transformation technique, the uncoupled governing equations with 3-DOF are established, and the analytical displacement solutions of the finite element equations are derived in series form or double integral form. Therefore, the stress concentration factor can then be discussed easily and conveniently. For the plate subjected to unidirectional bending loads, the non-conforming plate bending element with four nodes and 12-DOF is taken as examples to demonstrate the application of the proposed method. The inner force distribution is obtained. The solutions are adequate for the condition when the hole is far away from the edges and the thin plate subjected to any transverse loadings.

A Study on Stress Concentration Phenomena in Cylindrical Structures due to Stractural Incontinuty by Finite Element Method (構造的 不連續에 기인하는 圓筒構造物의 應力集中現象에 관한 有限要素法에 의한 硏究)

  • Kim, Doo-Man;Chung, Sei-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.3 no.2
    • /
    • pp.25-34
    • /
    • 1988
  • The stress concentration phenomena due to the structural incontinuty are studied by finite element method. In this study, a circular cylinder is treated. Under the axial load, the membrance action is dominate and the 24 D.O.F. cylindrical membrane finite element is used. The assembly of this element can successfully represent the original structure geometrically. The internal displacement function is such organized that the inter element compatibility condition is fully satisfied. In this study, the stress concentration factors due to the presence of a hole on the cylinder wall are obtained, and the factors versus the location of the hole is computed and plotted. It is found that the hole effect on the stress concentration disappears beyond the neighboring region of the hole size form the edge of the hole. Those results are useful for practical design in determining the region where the re-inforcing is necessary.

  • PDF

Change of Strength of High-Strength Bolted Connection Depending on Standard and Over Bolt Hole (표준공과 과대공을 갖는 고장력볼트 접합부의 강도변화)

  • Yang, Seung-Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.605-612
    • /
    • 2012
  • A tension member that has a high-strength bolt fastened to a standard bolt hole increases structural resistance but causes problems from workability or economic perspectives. In this research, a total of 28 samples that have standard and over bolt holes as the tension member's high-strength bolted connection were made and a tension test was conducted. The change of strength of the connection has been confirmed by comparing the tension load of standard and over bolt hole samples obtained from the test results with the design strength due to net section and end distance. Samples made with over bolt holes had a lighter tension load than that of samples made with standard bolt holes, exceeded the design strength of present design standards, and although decrease in strength was inevitable due to the over bolt hole, their safety was satisfactory.

Nonlinear Analysis of Anchor Head for High Strength Steel Strand (고강도 강연선용 앵커헤드의 형상변화에 따른 비선형 거동특성 분석)

  • Noh, Myung-Hyun;Seong, Taek-Ryong;Kim, Jin-Kook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.2
    • /
    • pp.163-173
    • /
    • 2012
  • This study covers the nonlinear analysis of anchor head for high strength prestressing strand and presents necessary process in improving the performance of anchor head. The surface of wedge for strand is contacted to the surface of the wedge hole on anchor head when it is fitted into the wedge hole, and the contact condition changes according to the level of load applied through the wedge. In order to analyze detailed behavior, nonlinear material model and contact element were used in analysis. It was found from the analysis that the behavior of anchor head is affected by the interaction with the wedge contacted so that the wedge in FE model should have the same figure as the actual object. Circular array of wedge hole presents better stress distribution than layer array even though the small difference in maximum deformation. Increment of thickness of anchor head and distance of wedge hole also improve the performance of anchor head.

Verification and Suggestion of Optimization Method for Rivet Arrangement with Regard to Stress Concentration between Hole-Edge and Hole-Hole on a 2-D Plate (2차원 평판 내 구멍-모서리 및 구멍간의 응력 집중 효과를 고려한 리벳 배치 최적화 기법 검증 및 제안)

  • Lee, Sang Gu;Gong, Du Hyun;Sim, Ji Soo;Shin, Sang Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.491-498
    • /
    • 2016
  • Stress on plates may increase in the neighborhood the edges or the holes for rivets or bolts. Excessive stress concentration may lead to severe breakage of the plates. Thus, it is important to conduct optimization of arrangement of holes at the design stage. In this paper, accuracy of FEM analysis was examined for such stress concentration. By changing the hole size on a narrow plate, change of the stress concentration factor(K) was investigated. Additionally, the same experiment was conducted about series of multiple holes on plate to investigate interaction between the adjacent holes. Then, the FEM results were compared to the reference predictions respectively. Finally, a method by which simple stress concentrating situations can be optimized, will be suggested. This method was examined by FEM, and showed similar tendency with the expectation. Therefore, this method can be valuable when arranging the holes on a plate.

Development of 3-Dimensional Stress Measurement System by Bore hole Bottom Deformation Method (공저변형법에 의한 3차원응력측정 시스템의 개발)

  • Lee, Ki-Ha;Ishijima, Yoji;Fujii, Yoshiaki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.34-41
    • /
    • 2006
  • A 3-dimensional stress measurement system based on the bore hole bottom deformation method, which is one of the stress relief methods, was developed. A pilot bore hole is drilled from the bottom of a bore hole and the stress meter is inserted into the pilot bore hole in the method. The bore hole is advanced as an over coring and the deformations in seven directions are measured by cantilever type-sensors. Using the cantilever type-sensors saves time for hardening of glue. No cable connection between the stress meter and a data logger is necessary since a compact data logger is installed in the stress meter. The accuracy of the stress meter was confirmed by a biaxial test for a Shikotsu welded tuff block although in-situ tests have not been carried out yet.

  • PDF

The Stress Analysis of the Cross Beam of the Electric Car-body according to the Change of Location and Shape of Circular Hole (원공 위치와 형상 변화에 따른 전동차 크로스 빔의 강도해석)

  • Jeon, Hyung-Yong;Sung, Rak-Won;Han, Geun-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.9-17
    • /
    • 1999
  • This investigation is the result of the structural analysis by finite element method for optimal design of the cross beam with circular holes of the electric car-body. in order to install the air pipe and electric wire pipe that correspond signal between electric machines for the control system and to reduce the weight of the electric car-body, several circular areas from a cross beam should be taken off. What we want to perform is the optimal design of a cross beam with circular holes to posses equal stress in comparison with no hole cross beam. first, no hole cross beam as basic modal be chosen, executing the analysis, reviewing the distribution of stress and displacement at each location. several parameter should be adopted from the cross beam geometry like the location and shape of the hole to affect the maximum stress and displacement. So the analysis was executed by finite element analysis for finding optimal design parameter to the change of the location and shape of the circular hole. finally, the optimal design of the cross beam with circular holes was obtained and the maximum equivalent stress was compared with no hole cross beam at each location.

  • PDF

Automation of Detail Structural Design Process using a General-Purpose CAD System (상세 구조설계 자동화를 위한 범용 CAD 시스템의 응용)

  • Hwa-K. Lim;Heung-W. Suh;Duck-Y. Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.17-24
    • /
    • 1995
  • In this paper, it is studied the design automation method in detail structural design stage using a general-purpose CAD system. It is observed that the macro function with parametric concept is very useful in detail structural design. We applied this concept to transverse web frame, slot hole and collar plate, and bracket modeling.

  • PDF

Effects of Ground Improvement Depending on the Type of Soil by Compaction Grouting System (토질의 종류에 따른 CGS공법의 지반개량효과에 관한 연구)

  • Chun, Byung-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.211-220
    • /
    • 2002
  • CGS(Compaction Grouting System) is widely used in reinforcement of structural foundation and ground improvement in soft ground. But the effects of ground improvement depending on the type of soil must be studied in order to adopt in various soils (granular soil and cohesive soil). In this study, characteristics of ground improvement (the increase of N value, increase in unit weight, vertical displacement on the ground surface) by CGS method was compared through two cases that were performed in granular and cohesive soil. The results show that the closer to the grout hole, the more increase in N value and this trend appear distinctly in granular soil. Unit weight of ground increase largely near by the grout hole and decrease in far from it independently of the soil type. The vertical displacement on the ground surface appeared in smaller area in case of granular soil than cohesive soil.