• Title/Summary/Keyword: structural genomics

Search Result 137, Processing Time 0.027 seconds

Structural Basis of the Disease-related Proteins: Target Oriented Structural Proteomics

  • Jinho Moon;Heo, Yong-Suk;Kim, Young-Kwan;Kim, Hye-Yeon;Park, Min-Hye;Hwang, Kwang-Yeon
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2003.05a
    • /
    • pp.15-15
    • /
    • 2003
  • To discover new drugs more quickly and more efficiently, pharmaceutical companies and biotechnology firms are increasingly turning to the genomics and the structural proteomics technologies. Structural-proteomics can provide a foundation for this through the determination and analysis for protein structure on a genomics scale. Among many structures determined by CGI, we will present with the representative examples drawn from our work on novel structures or complex structures of the disease-related proteins. The alpha subunit of Hypoxia-inducible factor (HIF) is targeted for degradation under normoxic conditions by an ubiquitin-ligase complex that recognizes a hydroxylated proline residue in HIF. Hydroxylation is catalysed by HIF prolyl 4-hydroxylases (HIFPH) which are fe(II) and 2-oxoglutarate (2-OG) dependent oxygenases. Here, we discuss the first crystal structure of the catalytic domain of HIFPH in complexes, with the Fe(II)/2-OG at 1.8Å. These structures suggest that the Ll region (residues 236-253), which is also conserved in mammals, form a 'lid' that closes over the active site. The structural and mutagenesis analyses allow us to provide a focus for understanding cellular responses to hypoxia and a target for the therapeutic manipulation.

  • PDF

Structural Basis of the Disease-related Proteins: Target Oriented Structural Proteomics

  • Hwang, Kwang-Yeon;Lee, Tae-Gyu;Kim, Jin-Hwan;Jeon, Young-Ho;Seonggu Ro;Cho, Joong-Myung
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.28-28
    • /
    • 2003
  • To discover new drugs more quickly and more efficiently, pharmaceutical companies and biotechnology firms are increasingly turning to the genomics and the structural proteomics technologies. Structural-proteomics can provide a foundation for this through the determination and analysis for protein structure on a genomics scale. Among many structures determined by CGI, we will present with the representative examples drawn from our work on novel structures or complex structures of the disease-related proteins. The alpha subunit of Hypoxia-inducible factor (HIF) is targeted for degradation under normoxic conditions by an ubiquitin-ligase complex that recognizes a hydroxylated proline residue in HIF, Hydroxylation is catalysed by HIF prolyl 4-hydroxylases (HIFPH) which are Fe(II) and 2-oxoglutarate (2-OG) dependent oxygenases. Here, we discuss the first crystal structure of the catalytic domain of HIFPH in complexes, with the Fe(II)/2-OG at 1.8 ${\AA}$. These structures suggest that the L1 region (residues 236-253), which is also conserved in mammals, form a ‘lid’ that closes over the active site. The structural and mutagenesis analyses allow us to provide a focus for understanding cellular responses to hypoxia and a target for the therapeutic manipulation.

  • PDF

BioSMACK: a linux live CD for genome-wide association analyses

  • Hong, Chang-Bum;Kim, Young-Jin;Moon, Sang-Hoon;Shin, Young-Ah;Go, Min-Jin;Kim, Dong-Joon;Lee, Jong-Young;Cho, Yoon-Shin
    • BMB Reports
    • /
    • v.45 no.1
    • /
    • pp.44-46
    • /
    • 2012
  • Recent advances in high-throughput genotyping technologies have enabled us to conduct a genome-wide association study (GWAS) on a large cohort. However, analyzing millions of single nucleotide polymorphisms (SNPs) is still a difficult task for researchers conducting a GWAS. Several difficulties such as compatibilities and dependencies are often encountered by researchers using analytical tools, during the installation of software. This is a huge obstacle to any research institute without computing facilities and specialists. Therefore, a proper research environment is an urgent need for researchers working on GWAS. We developed BioSMACK to provide a research environment for GWAS that requires no configuration and is easy to use. BioSMACK is based on the Ubuntu Live CD that offers a complete Linux-based operating system environment without installation. Moreover, we provide users with a GWAS manual consisting of a series of guidelines for GWAS and useful examples. BioSMACK is freely available at http://ksnp.cdc.go.kr/biosmack.

Beamline Automation of RIKEN Structural Genomics Beamlines

  • Ida, Koh;Yamamoto, Masaki;Kumasaka, Takashi;Ueno, Go;Kanda, Hiroyuki;Miyano, Masashi;Ishikawa, Tetsuya
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.463-465
    • /
    • 2002
  • RIKEN Structural Genomics Beamlines have been constructed for the crystallographic analysis in the structural genomics research at synchrotron radiation facility SPring-8. Synchrotron radiation accelerates the crystallographic analysis of protein structure. The target of the research and development is focused on the automatic beamline operation to maximize beamline efficiency. We are developing the sample management system, which is composed of the sample auto-changer and the database system, for high-throughput data collection. The sample management system and the beamline operating system make it possible to execute automatic data collection without any operators. The beamlines will be ready for user operation in autumn 2002. The concept of automatic beamline operation and the present status of RIKEN Structural Genomics Beamlines will be presented.

  • PDF

KAREBrowser: SNP database of Korea Association REsource Project

  • Hong, Chang-Bum;Kim, Young-Jin;Moon, Sang-Hoon;Shin, Young-Ah;Cho, Yoon-Shin;Lee, Jong-Young
    • BMB Reports
    • /
    • v.45 no.1
    • /
    • pp.47-50
    • /
    • 2012
  • The International HapMap Project and the Human Genome Diversity Project (HGDP) provide plentiful resources on human genome information to the public. However, this kind of information is limited because of the small sample size in both databases. A Genome-Wide Association Study has been conducted with 8,842 Korean subjects as a part of the Korea Association Resource (KARE) project. In an effort to build a publicly available browsing system for genome data resulted from large scale KARE GWAS, we developed the KARE browser. This browser provides users with a large amount of single nucleotide polymorphisms (SNPs) information comprising 1.5 million SNPs from population-based cohorts of 8,842 samples. KAREBrowser was based on the generic genome browser (GBrowse), a web-based application tool developed for users to navigate and visualize the genomic features and annotations in an interactive manner. All SNP information and related functions are available at the web site http://ksnp.cdc. go.kr/karebrowser/.

Genome-Wide Association Study Identifies Candidate Loci Associated with Platelet Count in Koreans

  • Oh, Ji Hee;Kim, Yun Kyoung;Moon, Sanghoon;Kim, Young Jin;Kim, Bong-Jo
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.225-230
    • /
    • 2014
  • Platelets are derived from the fragments that are formed from the cytoplasm of bone marrow megakaryocytes-small irregularly shaped anuclear cells. Platelets respond to vascular damage, contracts blood vessels, and attaches to the damaged region, thereby stopping bleeding, together with the action of blood coagulation factors. Platelet activation is known to affect genes associated with vascular risk factors, as well as with arteriosclerosis and myocardial infarction. Here, we performed a genome-wide association study with 352,228 single-nucleotide polymorphisms typed in 8,842 subjects of the Korea Association Resource (KARE) project and replicated the results in 7,861 subjects from an independent population. We identified genetic associations between platelet count and common variants nearby chromosome 4p16.1 ($p=1.46{\times}10^{10}$, in the KIAA0232 gene), 6p21 ($p=1.36{\times}10^{-7}$, in the BAK1 gene), and 12q24.12 ($p=1.11{\times}10^{-15}$, in the SH2B3 gene). Our results illustrate the value of large-scale discovery and a focus for several novel research avenues.

Structure and apoptotic function of p73

  • Yoon, Mi-Kyung;Ha, Ji-Hyang;Lee, Min-Sung;Chi, Seung-Wook
    • BMB Reports
    • /
    • v.48 no.2
    • /
    • pp.81-90
    • /
    • 2015
  • p73 is a structural and functional homologue of the p53 tumor suppressor protein. Like p53, p73 induces apoptosis and cell cycle arrest and transactivates p53-responsive genes, conferring its tumor suppressive activity. In addition, p73 has unique roles in neuronal development and differentiation. The importance of p73-induced apoptosis lies in its capability to substitute the pro-apoptotic activity of p53 in various human cancer cells in which p53 is mutated or inactive. Despite the great importance of p73-induced apoptosis in cancer therapy, little is known about the molecular basis of p73-induced apoptosis. In this review, we discuss the p73 structures reported to date, detailed structural comparisons between p73 and p53, and current understanding of the transcription-dependent and -independent mechanisms of p73-induced apoptosis.

Genome-wide Survey of Copy Number Variants Associated with Blood Pressure and Body Mass Index in a Korean Population

  • Moon, Sang-Hoon;Kim, Young-Jin;Kim, Yun-Kyoung;Kim, Dong-Joon;Lee, Ji-Young;Go, Min-Jin;Shin, Young-Ah;Hong, Chang-Bum;Kim, Bong-Jo
    • Genomics & Informatics
    • /
    • v.9 no.4
    • /
    • pp.152-160
    • /
    • 2011
  • Hypertension is the major factor of most death and high blood pressure (BP) can lead to stroke, myocardial infarction and cardiac failure. Moreover, hypertension is strongly correlated with body mass index (BMI). Although the exact causes of hypertension are still unclear, some of genetic loci were discovered from genome-wide association study (GWAS). Therefore, it is essential to study genetic variation for finding more genetic factor affecting hypertension. The purpose of our study is to conduct a CNV association study for hypertension-related traits, BP and BMI, in Korean individuals. We identified 2,206 CNV regions from 3,274 community-based Korean participants using the Affymetrix Genome-Wide Human SNP Array 6.0 platform and performed a logistic regression analysis of CNVs with two hypertension-related traits, BP and BMI. Moreover, the 4,692 participants in an independent cohort were selected for respective replication analyses. GWAS of CNV identified two loci encompassing previously known hypertension-related genes: LPA (lipoprotein) on 6q26, and JAK2 (Janus kinase 2) on 9p24, with suggestive p-values (0.0334 for LPA and 0.0305 for JAK2 ). These two positive findings, however, were not evaluated in the replication stage. Our result confirmed the conclusion of CNV study from the WTCCC suggesting weak association with common diseases. This is the first study of CNV association study with BP and BMI in Korean population and it provides a state of CNV association study with common human diseases using SNP array.

Identification and extensive analysis of inverted-duplicated HBV integration in a human hepatocellular carcinoma cell line

  • Bok, Jeong;Kim, Kwang-Joong;Park, Mi-Hyun;Cho, Seung-Hak;Lee, Hye-Ja;Lee, Eun-Ju;Park, Chan;Lee, Jong-Young
    • BMB Reports
    • /
    • v.45 no.6
    • /
    • pp.365-370
    • /
    • 2012
  • Hepatitis B virus (HBV) DNA is often integrated into hepatocellular carcinoma (HCC). Although the relationship between HBV integration and HCC development has been widely studied, the role of HBV integration in HCC development is still not completely understood. In the present study, we constructed a pooled BAC library of 9 established cell lines derived from HCC patients with HBV infections. By amplifying viral genes and superpooling of BAC clones, we identified 2 clones harboring integrated HBV DNA. Screening of host-virus junctions by repeated sequencing revealed an HBV DNA integration site on chromosome 11q13 in the SNU-886 cell line. The structure and rearrangement of integrated HBV DNA were extensively analyzed. An inverted duplicated structure, with fusion of at least 2 HBV DNA molecules in opposite orientations, was identified in the region. The gene expression of cancer-related genes increased near the viral integration site in HCC cell line SNU-886.

Identification of a Copy Number Variation on Chromosome 20q13.12 Associated with Osteoporotic Fractures in the Korean Population

  • Park, Tae-Joon;Hwang, Mi Yeong;Moon, Sanghoon;Hwang, Joo-Yeon;Go, Min Jin;Kim, Bong-Jo
    • Genomics & Informatics
    • /
    • v.14 no.4
    • /
    • pp.216-221
    • /
    • 2016
  • Osteoporotic fractures (OFs) are critical hard outcomes of osteoporosis and are characterized by decreased bone strength induced by low bone density and microarchitectural deterioration in bone tissue. Most OFs cause acute pain, hospitalization, immobilization, and slow recovery in patients and are associated with increased mortality. A variety of genetic studies have suggested associations of genetic variants with the risk of OF. Genome-wide association studies have reported various single-nucleotide polymorphisms and copy number variations (CNVs) in European and Asian populations. To identify CNV regions associated with OF risk, we conducted a genome-wide CNV study in a Korean population. We performed logistic regression analyses in 1,537 Korean subjects (299 OF cases and 1,238 healthy controls) and identified a total of 8 CNV regions significantly associated with OF (p < 0.05). Then, one CNV region located on chromosome 20q13.12 was selected for experimental validation. The selected CNV region was experimentally validated by quantitative polymerase chain reaction. The CNV region of chromosome 20q13.12 is positioned upstream of a family of long non-coding RNAs, LINC01260. Our findings could provide new information on the genetic factors associated with the risk of OF.