• 제목/요약/키워드: structural formwork

검색결과 88건 처리시간 0.026초

Investigation of Likelihood of Cracking in Reinforced Concrete Bridge Decks

  • ElSafty, Adel;Abdel-Mohti, Ahmed
    • International Journal of Concrete Structures and Materials
    • /
    • 제7권1호
    • /
    • pp.79-93
    • /
    • 2013
  • One of the biggest problems affecting bridges is the transverse cracking and deterioration of concrete bridge decks. The causes of early age cracking are primarily attributed to plastic shrinkage, temperature effects, autogenous shrinkage, and drying shrinkage. The cracks can be influenced by material characteristics, casting sequence, formwork, climate conditions, geometry, and time dependent factors. The cracking of bridge decks not only creates unsightly aesthetic condition but also greatly reduces durability. It leads to a loss of functionality, loss of stiffness, and ultimately loss of structural safety. This investigation consists of field, laboratory, and analytical phases. The experimental and field testing investigate the early age transverse cracking of bridge decks and evaluate the use of sealant materials. The research identifies suitable materials, for crack sealing, with an ability to span cracks of various widths and to achieve performance criteria such as penetration depth, bond strength, and elongation. This paper also analytically examines the effect of a wide range of parameters on the development of cracking such as the number of spans, the span length, girder spacing, deck thickness, concrete compressive strength, dead load, hydration, temperature, shrinkage, and creep. The importance of each parameter is identified and then evaluated. Also, the AASHTO Standard Specification limits liveload deflections to L/800 for ordinary bridges and L/1000 for bridges in urban areas that are subject to pedestrian use. The deflection is found to be an important parameter to affect cracking. A set of recommendations to limit the transverse deck cracks in bridge decks is also presented.

PC부재의 접합부 거푸집의 개선방안 연구 -공동주택을 중심으로- (Improvement Plan for Connecting Form of PC Member -Focused on Apartment Buildings-)

  • 김선형;최재휘;김선국;이동훈
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2010년도 춘계 학술논문 발표대회 1부
    • /
    • pp.9-12
    • /
    • 2010
  • Conventional apartment building projects have favored wall slab structure for the ease of construction and economic viability. However, wall slab structure, consisting of bearing walls, makes remodeling a difficult challenge. In addition, as the amendment to the Building Act in November, 2005 incentivized easy-to-remodel Rahmen structure design for apartment building in terms of floor area ratio and the number of stories, were are seeing more use of PC construct method in apartment building projects gradually. However, PC construction method requires complex connections between beams and columns, making it difficult to install and remove formwork. Furthermore, it is not possible to reuse forms after removal, generating lots of construction wastes, and it is necessary to install new forms again when the size of connection changes in line with modification of column cross-section. Researchers in Korea and elsewhere in the world have focused on structural performance of connection in PC construction method, with little attention to alternative approaches to improving connection forms for PC construction method. Accordingly, this research aims to study an approach to improving connection forms for PC construction method.

  • PDF

Flexural Behavior of Continuous Composite Bridges with Precast Concrete Decks

  • Chung, Chul-Hun
    • 콘크리트학회논문집
    • /
    • 제15권4호
    • /
    • pp.625-633
    • /
    • 2003
  • For the construction of open-topped steel box girder bridges, prefabricated concrete slab could offer several advantages over cast-in-situ deck including good quality control, fast construction, and elimination of the formwork for concrete slab casting. However, precast decks without reinforcements at transverse joints between precast slabs should be designed to prevent the initiation of cracking at the joints, because the performance of the joint is especially crucial for the integrity of a structural system. Several prestressing methods are available to introduce proper compression at the joints, such as internal tendons, external tendons and support lowering after shear connection. In this paper, experimental results from a continuous composite bridge model with precast decks are presented. Internal tendons and external tendons were used to prevent cracking at the joints. Judging from the tests, precast decks in negative moment regions have the whole contribution to the flexural stiffness of composite section under service loads if appropriate prestressing is introduced. The validity of the calculation of a cracking load fur serviceability was presented by comparing an observed cracking load and the calculated value. Flexural behavior of the continuous composite beam with external prestressing before and after cracking was discussed by using the deflection and strain data.

Study on stability and design guidelines for the combined system of scaffolds and shores

  • Peng, Jui-Lin;Wang, Chung-Sheng;Wang, Shu-Hong;Chan, Siu-Lai
    • Steel and Composite Structures
    • /
    • 제35권3호
    • /
    • pp.385-404
    • /
    • 2020
  • Since the scaffold is composed of modular members, the total height of multi-story scaffolds does not often meet with the headroom of construction buildings. At this time, other supporting members need to be set up on the top of scaffolds. However, the mechanical behaviors of the combined system of scaffolds and other supporting members have seldom been discussed. This study explores the stability of the combined system of scaffolds and shores. The loading tests conducted in the laboratory show that the critical load of the combined system of two-story scaffolds and wooden shores is about half that of the three-story scaffold system with the same height. In the failure of both the "scaffold system" and the "combined system of scaffolds and shores' after loading, the deformation mainly occurs in the in-plane direction of the scaffold. The outdoor loading test shows that no failure occurs on any members when the combined system fails. Instead, the whole system buckles and then collapses. In addition, the top formwork of the combined system can achieve the effect of lateral support reinforcement with small lateral support forces in the outdoor loading test. This study proposes the preliminary design guidelines for the scaffolding structural design.

촉진형 AE감수제를 사용한 콘크리트의 최적공기산정을 위한 조기강도 발현 특성 연구 (A Study on Early-strength Development of Concrete Using Accelerating AE Water Reducing Agents for the Estimation of Optimum Duration)

  • 이주헌;사순헌;지석원;전현규;서치호
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2006년도 추계 학술논문 발표대회 논문집
    • /
    • pp.91-94
    • /
    • 2006
  • The way to shorten a construction period is considered to an very important technology development element as reducing the formwork removal periods with promoting strength revelation own concrete. This study executed experiment to review usability of early strength revelation chemical admixture which is judged in ways effective with premature removal of form about concrete. Use of early strength revelation AE water reducin admixture is apperaing so that strength revelation by early hydration promotions is excellent. The results of being applied proposed work process are that compressive strength are appeared more than 5MPa within 16 hours so that removal of vertical form was possible. the concrete compressive strength satisfied with a more than 2/3 of specified concrete strength for removal of horizontal form are appeared in 42 hours of 27 MPa proportioning strength, in 36 hours of 30, 35 MPa proportioning strength so that the 6 days cycle time of concrete structural frame work is cut by 2 days as shortening delayed period in works of removing slab forms. So construction cost reductions and a construction period shortening are judged so that it is possible.

  • PDF

Optimum design of prestressed concrete beams by a modified grid search method

  • Cagatay, Ismail H.;Dundar, Cengiz;Aksogan, Orhan
    • Structural Engineering and Mechanics
    • /
    • 제15권1호
    • /
    • pp.39-52
    • /
    • 2003
  • A computer program has been developed for the optimum design of prestressed concrete beams under flexure. Optimum values of prestressing force, tendon configuration, and cross-sectional dimensions are determined subject to constraints on the design variables and stresses. 28 constraints have been used including flexural stresses, cover requirement, the aspect ratios for top and bottom flanges and web part of a beam and ultimate moment. The objective function contains cost of concrete, prestressing force and formwork. Using this function, it is possible to obtain minimum cost design, minimum weight or cross-sectional area of concrete design and minimum prestressing force design. Besides the idealized I-shaped cross-section, which is widely used in literature, a general I-shaped cross-section with eight geometrical design variables are used here. Four examples, one of which is available in the literature and the others are modified form of it, have been solved for minimum cost and minimum cross-sectional area designs and the results are compared. The computer program, which employs modified grid search optimization method, can assist a designer in producing efficient designs rapidly and easily. Considerable savings in computational work are thus made possible.

Optimum design of cantilever retaining walls under seismic loads using a hybrid TLBO algorithm

  • Temur, Rasim
    • Geomechanics and Engineering
    • /
    • 제24권3호
    • /
    • pp.237-251
    • /
    • 2021
  • The main purpose of this study is to investigate the performance of the proposed hybrid teaching-learning based optimization algorithm on the optimum design of reinforced concrete (RC) cantilever retaining walls. For this purpose, three different design examples are optimized with 100 independent runs considering continuous and discrete variables. In order to determine the algorithm performance, the optimization results were compared with the outcomes of the nine powerful meta-heuristic algorithms applied to this problem, previously: the big bang-big crunch (BB-BC), the biogeography based optimization (BBO), the flower pollination (FPA), the grey wolf optimization (GWO), the harmony search (HS), the particle swarm optimization (PSO), the teaching-learning based optimization (TLBO), the jaya (JA), and Rao-3 algorithms. Moreover, Rao-1 and Rao-2 algorithms are applied to this design problem for the first time. The objective function is defined as minimizing the total material and labor costs including concrete, steel, and formwork per unit length of the cantilever retaining walls subjected to the requirements of the American Concrete Institute (ACI 318-05). Furthermore, the effects of peak ground acceleration value on minimum total cost is investigated using various stem height, surcharge loads, and backfill slope angle. Finally, the most robust results were obtained by HTLBO with 50 populations. Consequently the optimization results show that, depending on the increase in PGA value, the optimum cost of RC cantilever retaining walls increases smoothly with the stem height but increases rapidly with the surcharge loads and backfill slope angle.

Optimization of RC polygonal cross-sections under compression and biaxial bending with QPSO

  • de Oliveira, Lucas C.;de Almeida, Felipe S.;Gomes, Herbert M.
    • Computers and Concrete
    • /
    • 제30권2호
    • /
    • pp.127-141
    • /
    • 2022
  • In this paper, a numerical procedure is proposed for achieving the minimum cost design of reinforced concrete polygonal column cross-sections under compression and biaxial bending. A methodology is developed to integrate the metaheuristic algorithm Quantum Particle Swarm Optimization (QPSO) with an algorithm for the evaluation of the strength of reinforced concrete cross-sections under combined axial load and biaxial bending, according to the design criteria of Brazilian Standard ABNT NBR 6118:2014. The objective function formulation takes into account the costs of concrete, reinforcement, and formwork. The cross-section dimensions, the number and diameter of rebar and the concrete strength are taken as discrete design variables. This methodology is applied to polygonal cross-sections, such as rectangular sections, rectangular hollow sections, and L-shaped cross-sections. To evaluate the efficiency of the methodology, the optimal solutions obtained were compared to results reported by other authors using conventional methods or alternative optimization techniques. An additional study investigates the effect on final costs for an alternative parametrization of rebar positioning on the cross-section. The proposed optimization method proved to be efficient in the search for optimal solutions, presenting consistent results that confirm the importance of using optimization techniques in the design of reinforced concrete structures.

An algorithm of marking line correction for robot-based layout automation of building structures

  • Lim, Hyunsu;Kim, Taehoon;Cho, Kyuman;Kim, Taehoon;Kim, Chang-Won
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.312-318
    • /
    • 2022
  • Robot-based layout automation has been recently promoted for the purpose of improving productivity and quality. Marking robots have various functional demands to secure marking precision and environmental adaptability. In particular, in order to automate marking work of building structure, correction of the marking line through position recognition of rebars placed is required. Because the rebars must maintain a constant cover thickness from the formwork surface, if the rebars are out of planned position, the rebar or marking line need to be corrected to secure the cover thickness. Thus, the marking robot for structural work needs to have the function for determining the position correction of the rebar or the marking line. In order to judge the correction of marking line, it is required to measure the distance between the planned marking line and the rebar placed. Therefore, this study proposes an algorithm that can measure the distance between the planned line and the rebar, and correct marking line for the automatic operation of the marking robot. The results of this study will be utilized as a core function for unmanned operation of the marking robot and contribute to securing precise marking by reflecting construction errors.

  • PDF

Experimental and numerical studies of precast connection under progressive collapse scenario

  • Joshi, Digesh D.;Patel, Paresh V.;Rangwala, Husain M.;Patoliya, Bhautik G.
    • Advances in concrete construction
    • /
    • 제9권3호
    • /
    • pp.235-248
    • /
    • 2020
  • Progressive collapse in a structure occurs when load bearing members are failed and the adjoining structural elements cannot resist the redistributed forces and fails subsequently, that leads to complete collapse of structure. Recently, construction using precast concrete technology is adopted increasingly because it offers many advantages like faster construction, less requirement of skilled labours at site, reduced formwork and scaffolding, massive production with reduced amount of construction waste, better quality and better surface finishing as compared to conventional reinforced concrete construction. Connections are the critical elements for any precast structure, because in past, major collapse of precast structure took place because of connection failure. In this study, behavior of four different precast wet connections with U shaped reinforcement bars provided at different locations is evaluated. Reduced 1/3rd scale precast beam column assemblies having two span beam and three columns with removed middle column are constructed and examined by performing experiments. The response of precast connections is compared with monolithic connection, under column removal scenario. The connection region of test specimens are filled by cast-in-place micro concrete with and without polypropylene fibers. Performance of specimen is evaluated on the basis of ultimate load carrying capacity, maximum deflection at the location of removed middle column, crack formation and failure propagation. Further, Finite element (FE) analysis is carried out for validation of experimental studies and understanding the performance of structural components. Monolithic and precast beam column assemblies are modeled using non-linear Finite Element (FE) analysis based software ABAQUS. Actual experimental conditions are simulated using appropriate boundary and loading conditions. Finite Element simulation results in terms of load versus deflection are compared with that of experimental study. The nonlinear FE analysis results shows good agreement with experimental results.