• Title/Summary/Keyword: structural flexibility

Search Result 568, Processing Time 0.023 seconds

Structural Dynamics Analysis of a Clamp Jointed Complex Ream by Using the Flexibility Influence Coefficient Method (유연도 영향계수법을 이용한 접촉결합부가 있는 복합구조물의 동적 해석)

  • 조재혁;김현욱;최영휴
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.528-533
    • /
    • 1995
  • An analyical method is proposed to construct a clamp jointed structure as an equivalent stiffness matrix element in the finite element modal analysis of a complex beam structure. Static structural analysis was first made for the detail finite element model of the clamp joint. Utilizing the results of this analysis, the equivalent stiffness matrix element was buildup by using the flexibility influence coefficient method and Guyan condensation. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam. And the finite element analysis results were compared to those experimental modal analysis. Comparison shows doog agreement each other Furthermore the effects of normal contact(or clamping) load on the equivalent stiffness matrix was also examined. The equivalent stiffness matrix showed little change in spite of the remakable increase in the contact load on the clamp joint.

  • PDF

Structural Dynamic Analysis of Bearingless Rotor System with Cross-shaped Composite Flexbeam (십자형 복합재 유연보 장착 무베어링 로터 시스템 구조동역학 해석)

  • Kim Do-Hyung;Lim In-Gyu;Lee Myung-Kyu;Lee In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.108-111
    • /
    • 2004
  • Structural dynamic characteristics and aeroelastic stability of a small-scale bearingless rotor system have been investigated. A flexbeam is one of the most important component of bearingless hub system. It must have sufficient torsional flexibility as well as baseline stiffness in order to produce feathering motion. In the present paper, a cross-shaped composite flexbeam has been proposed for a guarantee of torsional flexibility and flapwise and lagwise bending stiffness. One dimensional elastic beam model was used for the construction of a structural model. Equivalent isotropic sectional stiffness was used in the blade model, and the flexbeam was regarded as anisotropic; which has ten independent stiffness quantities. CAMRAD II has been used for the analysis of structural dynamic characteristics of the bearingless rotor system. Rotational natural frequencies and aeroelastic stability at hovering have been investigated. Analysis result shows that the cross-shaped flexbeam has the rotational natural frequency tuning capacity.

  • PDF

Experimental study on bridge structural health monitoring using blind source separation method: arch bridge

  • Huang, Chaojun;Nagarajaiah, Satish
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.1
    • /
    • pp.69-87
    • /
    • 2014
  • A new output only modal analysis method is developed in this paper. This method uses continuous wavelet transform to modify a popular blind source separation algorithm, second order blind identification (SOBI). The wavelet modified SOBI (WMSOBI) method replaces original time domain signal with selected time-frequency domain wavelet coefficients, which overcomes the shortcomings of SOBI. Both numerical and experimental studies on bridge models are carried out when there are limited number of sensors. Identified modal properties from WMSOBI are analyzed and compared with fast Fourier transform (FFT), SOBI and eigensystem realization algorithm (ERA). The comparison shows WMSOBI can identify as many results as FFT and ERA. Further case study of structural health monitoring (SHM) on an arch bridge verifies the capability to detect damages by combining WMSOBI with incomplete flexibility difference method.

Recent Developments of Polymer Electrolyte Membrane Fuel Cell Design

  • Wonchan Hwang;Yung-Eun Sung
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.120-130
    • /
    • 2023
  • PEMFC has high potential for future development due to its high energy density, eco-friendliness, and high energy efficiency. When it becomes small, light and flexible, it can be competitive as an energy source for portable devices or flexible electronic devices. However, the use of hard and heavy materials for structural rigidity and uniform contact pressure transmission has become an obstacle to reducing the weight and flexibility of PEMFCs. This review intends to provide an example of the application of a new structure and material for lightweight and flexibility. As a lightweight PEMFC, a tubular design is presented and structural advantages through numerical modeling are explained. Manufacturing methods to realize the structural advantages and possibilities of tubular PEMFCs are discussed. In addition, the materials and manufacturing processes used to fabricate lightweight and flexible PEMFCs are described and factors affecting performance are analyzed. Strategies and structural improvements of light and flexible movements are discussed according to the component parts.

Marine Transportation Analysis for the Offshore Structures Considering the Barge Flexibility (바지의 유연성을 고려한 해상 운송 해석)

  • 김덕수;전석희;허주호
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.73-78
    • /
    • 2001
  • In this paper, overall planning and design procedure for the marine transportation are examined. For this purpose, marine transportation analysis for the North Nemba deck structure has been carried out. The results of analysis with the rigid barge transportation are compared to those with the barge considering its flexibility. The environmental conditions, especially waves, are shown to be the most important factor which affected on the structural strength, deformation and fatigue damage.

  • PDF

The Role of Industrial Clustering and Manufacturing Flexibility in Achieving High Innovation Capability and Operational Performance in Indonesian Manufacturing SMEs

  • Purwanto, Untung Setiyo;Kamaruddin, Shahrul;Mohamad, Norizah
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.3
    • /
    • pp.236-247
    • /
    • 2015
  • This study aims to examine the effects of industrial clustering and manufacturing flexibility on innovation capability and operational performance. This study follow a survey method to collect data pertaining to the phenomena of industrial clustering, manufacturing flexibility, innovation capability, and operational performance by utilizing a single respondent design. A total of 124 Indonesian manufacturing SMEs are taken to test the proposed theoretical model by utilizing covariance-based structural equations modeling approach. It was found that both industrial clustering and manufacturing flexibility was positively associated with operational performance and innovation capability as well. In addition, innovation capability may account for the effects of industrial clustering and manufacturing flexibility on operational performance. This implies that manufacturing SMEs have to reorient their production and operation perspectives, including agglomerate with other similar or related SMEs to develop and utilize their own resources. The SMEs also need to possess some degree of manufacturing flexibility in respond to the uncertain environment and market changes. In addition, the SMEs should put a greater emphasize to use industrial cluster and manufacturing flexibility benefits to generate innovation capability to achieve high performance.

Dynamic soil-structure interaction studies on 275m tall industrial chimney with openings

  • Jayalekshmi, B.R.;Thomas, Ansu;Shivashankar, R.
    • Earthquakes and Structures
    • /
    • v.7 no.2
    • /
    • pp.233-250
    • /
    • 2014
  • In this paper, a three dimensional soil-structure interaction (SSI) is numerically simulated using finite element method in order to analyse the foundation moments in annular raft of tall slender chimney structures incorporating the effect of openings in the structure and the effect of soil flexibility, when the structure-soil system is subjected to El Centro (1940) ground motion in time domain. The transient dynamic analysis is carried out using LS-DYNA software. The linear ground response analysis program ProShake has been adopted for obtaining the ground level excitation for different soil conditions, given the rock level excitation. The radial and tangential bending moments of annular raft foundation obtained from this SSI analysis have been compared with those obtained from conventional method according to the Indian standard code of practice, IS 11089:1984. It is observed that tangential and radial moments increase with the increase in flexibility of soil. The analysis results show that the natural frequency of chimney decreases with increase in supporting soil flexibility. Structural responses increase when the openings in the structure are also considered. The purpose of this paper is to propose the need for an accurate evaluation of the soilstructure interaction forces which govern the structural response.

Use of Modal Flexibility and Normalized Modal Difference(NMD) for Mode Shape Expansion (모드 유연도 및 정규화된 모드차를 이용한 모드형상 전개)

  • Bijaya Jaishi;Ren Wei-Xin;Lee Sang-Ho;Kim Moon-Kyum
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.778-785
    • /
    • 2006
  • In this paper, two possible ways for mode shape expansion are proposed and opened for discussion for future use. The first method minimizes the modal flexibility error between the experimental and analytical mode shapes corresponding to the measured DOFs to find the multiplication matrix which can be treated as the least-squares minimization problem. In the second method, Normalized Modal Difference (NMD) is used to calculate multiplication matrix using the analytical DOFs corresponding to measured DOfs. This matrix is then used to expand the measured mode shape to unmeasured DOFs. A simulated simply supported beam is used to demonstrate the performance of the methods. These methods are then compared with two most promising existing methods namely Kidder dynamic expansion and Modal expansion methods. It is observed that the performance of the modal flexibility method is comparable with existing methods. NMD also have the potential to expand the mode shapes though it is seen more sensitive to the distribution of error between FEM and actual test data.

  • PDF

Improving the linear flexibility distribution model to simultaneously account for gravity and lateral loads

  • Habibi, AliReza;Izadpanah, Mehdi
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.11-22
    • /
    • 2017
  • There are two methods to model the plastification of members comprising lumped and distributed plasticity. When a reinforced concrete member experiences inelastic deformations, cracks tend to spread from the joint interface resulting in a curvature distribution; therefore, the lumped plasticity methods assuming plasticity is concentrated at a zero-length plastic hinge section at the ends of the elements, cannot model the actual behavior of reinforced concrete members. Some spread plasticity models including uniform, linear and recently power have been developed to take extended inelastic zone into account. In the aforementioned models, the extended inelastic zones in proximity of critical sections assumed close to connections are considered. Although the mentioned assumption is proper for the buildings simply imposed lateral loads, it is not appropriate for the gravity load effects. The gravity load effects can influence the inelastic zones in structural elements; therefore, the plasticity models presenting the flexibility distribution along the member merely based on lateral loads apart from the gravity load effects can bring about incorrect stiffness matrix for structure. In this study, the linear flexibility distribution model is improved to account for the distributed plasticity of members subjected to both gravity and lateral load effects. To do so, a new model in which, each member is taken as one structural element into account is proposed. Some numerical examples from previous studies are assessed and outcomes confirm the accuracy of proposed model. Also comparing the results of the proposed model with other spread plasticity models illustrates glaring error produced due to neglecting the gravity load effects.